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Introduction to Embedded Kernel Programming

Abstract

This paper shows the fundamental differences between high level application programming in a 
hosted and homogeneous environment compared to low level kernel programming in a free 
standing and heterogeneous environment.

First the hardware configuration, which was used in the course of this project, is specified. This 
way it should be possible for interested readers to conduct the same experiments at home. The 
next chapter documents the software configuration, that was used to set up the development 
environment. With exception of the operating system, all required software packages are freely 
available on the net. Afterwards the development process of cross building with the GNU ARM 
tool  chain  is  described. This  out-of-the-box tool  chain  is  used, so one can concentrate on 
programming on the "bare metal" rather than the burden of having to build a tool chain before 
one can start programming at all.

Further on, the architectural implications for developing an operating system kernel for the 
ARM Architecture are presented. This introduces the basic building blocks and constraints for 
the implementation. In the next chapter the programming of some representative peripheral 
devices  of  the  EDB9302  development  board  is  introduced.  These  examples  show  simple 
drivers, which export low level programming interfaces as callable methods.

Finally, lessons learned from this project are summarized and a list of references and useful 
resources is provided.
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1 Hardware Configuration
The development environment is based on the following hardware configuration. In the first 
phase, the host computer controls the target board by a console via the serial interface. After 
that,  the host  and target  systems are configured to communicate  over the LAN, which  is 
provided by the router.

This configuration consists of the following physical components.

● Cirrus Logic EDB9302 Engineering Development Board
● AMD64 Personal Computer
● US Robotics Broadband Router 8000-02
● Serial Null Modem Cable
● 3x CAT5 Cable

1.1 Host
The host computer provides the developing environment and controls the target board. In this 
context, the host is a personal computer based on an AMD Athlon 64 Processor, which is an 
implementation  of  the  AMD64  architecture.  The  serial  port  (COM1)  is  used  for  direct 
communication with the target, while the LAN is accessed via the ethernet adapter.

1.2 Target
The  target  is  a  Cirrus  Logic  EDB9302  Engineering  Development  Board,  which  offers  the 
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following core features.

● EP9302 processor
● 32 MB SDRAM
● 2x UART
● Ethernet MAC

The board also offers numerous other features, which were not exploited in this project though.

The Ethernet MAC subsystem is ISO 802.3 compliant and supports 1, 10 and 100 Mb/s transfer 
rates.

Before the board is powered on for the first time, make sure that all the jumpers are in their 
factory default position. These jumper defaults and locations are documented in [EDBTRM].

When the board is powered on, the LEDs POWER ON (red), 10Mb/s (green) and LED1 (green) 
are turned on, while all other LEDs are turned off. If the board is connected to an active router, 
the LINK OK LED must turn on. Depending on the configuration, the FULL DUPLEX LED may be 
active and the board may switch from the 10 Mb/s to the 100 Mb/s LED.

The board can be manually reset with the power-on-reset or the user-reset key.

1.3 Router
The router serves as an internet gateway and enables the LAN. In this context the router is 
configured to IP address 192.168.123.254 and subnet mask 255.255.255.0.

1.4 Connections
The serial null modem cable is an RS-232 cable with DE-9 connectors and connects the serial 
port of the host with one serial  port of the board. The LAN is built  with CAT5e cables for 
ethernet connections.
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2 Software Configuration

2.1 Boot Loader
Originally the board is shipped with Windows CE installed on the flash memory. In the context 
of this project we installed RedBoot to boot and configure the board.

2.2 Host Operating System
The host operating system is Microsoft Windows XP Professional Service Pack 2. The network 
configuration of the host is  a fixed IP address of  192.168.123.135 with a subnet mask of 
255.255.255.0.

2.3 Console
The console session is established using HyperTerminal and is configured as follows.

bandwith................ 57600 bit/s
data bits.................8
parity.....................none
stop bits.................1
flow control.............none

When the console session is established, a power on reset of the board will  cause the boot 
sequence to appear on the console.

+EP93xx - no EEPROM, static ESA, or RedBoot config option.
No network interfaces found
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version v2_0 - built 14:53:37, Nov 10 2005
Platform: Cirrus Logic EDB9302 Board (ARM920T) Rev A
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
FLASH: 0x60000000 - 0x61000000, 128 blocks of 0x00020000 bytes each.
RedBoot>

2.3.1 Flash Configuration

The flash configuration (fconfig) can be displayed (-l) with nick names (-n) and full names (-f).

RedBoot> fconfig -l -n -f
boot_script: Run script at boot: false
bootp: Use BOOTP for network configuration: true
dns_ip: DNS server IP address: 0.0.0.0
ep93xx_esa: Set eth0 network hardware address [MAC]: false
gdb_port: GDB connection port: 9000
info_console_force: Force console for special debug messages: false
net_debug: Network debug at boot time: false
RedBoot>

To enable the board for IP communication, the flash configuration is changed.

RedBoot> fconfig
Run script at boot: false
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Use BOOTP for network configuration: false
Gateway IP address: 192.168.123.254
Local IP address: 192.168.123.200
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.123.135
DNS server IP address:
Set eth0 network hardware address [MAC]: true
eth0 network hardware address [MAC]: 0x00:0x00:0x00:0x00:0xE8:0x32
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x60fc0000-0x60fc1000: .
... Program from 0x01fde000-0x01fdf000 at 0x60fc0000: .
RedBoot>

Now the new configuration is stored in the flash memory and the board is reset to let the new 
configuration take effect.

RedBoot> reset
... Resetting.
+Ethernet eth0: MAC address 00:00:00:00:e8:32
IP: 192.168.123.200/255.255.255.0, Gateway: 192.168.123.254
Default server: 192.168.123.135, DNS server IP: 0.0.0.0
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version v2_0 - built 14:53:37, Nov 10 2005
Platform: Cirrus Logic EDB9302 Board (ARM920T) Rev A
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
FLASH: 0x60000000 - 0x61000000, 128 blocks of 0x00020000 bytes each.
RedBoot>

Now the board is configured to be controlled via the LAN.

RedBoot> fconfig -l -n -f
boot_script: Run script at boot: false
bootp: Use BOOTP for network configuration: false
bootp_my_gateway_ip: Gateway IP address: 192.168.123.254
bootp_my_ip: Local IP address: 192.168.123.200
bootp_my_ip_mask: Local IP address mask: 255.255.255.0
bootp_server_ip: Default server IP address: 192.168.123.135
dns_ip: DNS server IP address: 0.0.0.0
ep93xx_esa: Set eth0 network hardware address [MAC]: true
ep93xx_esa_data: eth0 network hardware address [MAC]: 
0x00:0x00:0x00:0x00:0xE8:0x32
gdb_port: GDB connection port: 9000
info_console_force: Force console for special debug messages: false
net_debug: Network debug at boot time: false
RedBoot>

2.3.2 Network Check

The network configuration is checked with the ping command.

Ping will only work if all firewalls on the host and the router allow the exchange of ICMP Echo 
Request (8) and Echo Response (0) messages between the host and the board.
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The communication from the board to the host is tested with the ping command provided by 
the boot loader.

RedBoot> ping -h 192.168.123.135
Network PING - from 192.168.123.200 to 192.168.123.135
PING - received 10 of 10 expected
RedBoot>

The communication from the host to the board is tested from cygwin with the ping command.

$ ping 192.168.123.200
PING 192.168.123.200 (192.168.123.200): 56 data bytes
64 bytes from 192.168.123.200: icmp_seq=0 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=1 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=2 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=3 ttl=64 time=0 ms
----192.168.123.200 PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip (ms)  min/avg/max/med = 0/0/0/0
$

Now that the IP network is configured correctly and working the board can be accessed and 
controlled via the LAN.

2.4 Telnet
When the board is integrated into the LAN it can be controlled through a telnet session. The 
board provides the telnet service on port 9000.

The telnet session can only be established, when all firewalls on the host and the router allow 
TCP connections from the host to port 9000 of the board.

$ telnet 192.168.123.200 9000
RedBoot>

2.5 UNIX Environment
Cygwin is installed on the Windows based host to provide a UNIX environment. The following 
cygwin packages are used for this project.

bash 3.1-9 The GNU Bourne Again SHell
ping 1.0-1 test IP network connectivity

2.6 ARM Tool Chain
The GNU ARM tool  chain  enables the host  to cross compile  for  the ARM architecture and 
provides a set of platform specific tools.

2.7 TFTP Server
The host runs a TFTP server, which makes available the executable program files to the board.
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The board can only load programs from the host if all firewalls on the host or the router allow 
UDP messages between the host port 69 and the board.

When the programs are stored in the root directory of the TFTP server and adhere to the ELF 
format, they can be loaded with the load command provided by RedBoot.

RedBoot> load main
Entry point: 0x00100000, address range: 0x00100000-0x00100150
RedBoot>

When RedBoot loads a program via TFTP it reads the transmitted ELF file only as far as it 
needs to successfully load the program into memory. Therefore the load command will most 
likely not receive the entire ELF file, which will cause the TFTP server to time out the download 
and report an unsuccessful transmission. Nonetheless the program was loaded successfully.

RedBoot> go 0x100000
ping

When the loaded program is executed with the "go" command, it can not return control to 
RedBoot, because "go" performs a "transfer control" rather than a "call subroutine". Therefore 
the main routine should, instead of returning to the caller, set the watchdog timer and wait in 
an empty loop for the reset to occur.

RedBoot's "exec" command is used to boot a linux kernel image and therefore expects an 
accordingly bound program to be loaded in memory.
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3 Development with GNU ARM
The GNU ARM tool chain provides a set of tools to cross build for the target arm-elf. In this 
project the following tools are used.

arm-elf-gcc The GNU Compiler Collection
arm-elf-ld The GNU linker
arm-elf-objdump Display information from object files
arm-elf-readelf Display the contents of ELF format files

3.1 Compiling
The compiler is invoked with the following set of options.

-c compile the source file to an object file
-g insert debug information
-v verbose output
-fpic generate position independent code
-ffreestanding compile a freestanding application
-mcpu=arm920t ARM920T processor instruction set
-Wa,-a=<filename> save assembler listing as <filename>

In this case the -ffreestanding option is rather a comment, than a processing option, because 
the language semantics of c++ include the allocation and release of heap storage, which is a 
function provided by hosted environments.

The -mcpu option causes the assembler to stick to the instruction set, which can be executed 
by the specified processor.

arm-elf-gcc -c -g -v -ffreestanding -mcpu=arm920t \
-Wa,a=<asmlist> -o <output> <input>

3.1.1 Hosted Environments

In a hosted environment, an entire standard library is available and the program is invoked via 
its main function, which returns control to the caller and returns an exit code of type int. This 
is the case for most applications.

The GNU ARM tool  chain  incorporates  the newlib,  which  is  a  port  of  the standard library 
designed for embedded systems. This library respects the characteristic hardware configuration 
of such systems.

The  newlib  can  be  easily  ported  to  new  environments,  since  it  relies  only  on  the 
implementation of a set of few rather simple functions, which all  other library functions are 
built upon.

3.1.2 Freestanding Environments

In a freestanding environment, there may be no standard library and the program may be 
invoked at an arbitrary entry point. This is usually the case for an operating system kernel, 
which sets up his own environment.
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3.2 Linking
The object file is the bound by invoking the appropriate linker.

arm-elf-ld -static --verbose -T<script> -o <output> <input>

3.2.1 The Linker Script

The default linker script is replaced by a user defined script to reduce the size of the executable 
program file. The main entry point of the program is defined with the ENTRY statement. In this 
case the entry point  is  set directly to the main function. This is required by the loader to 
report, where it has loaded the entry point to.

ENTRY(main)

The start address is set to 0x100000 to avoid conflicts with the memory allocation of the boot 
loader. Otherwise the loader will terminate with the following message.

*** Abort! Attempt to load ELF data to address: 0x00000000 which is not in 
RAM

RedBoot prints its RAM allocation at start up and these boundaries are stored in the symbols 
FREEMEMLO and FREEMEMHI. These can be used to explicitly  load programs into available 
storage areas.

RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
RedBoot> load -b %{FREEMEMLO} main
Address offset = 0x00042000
Entry point: 0x00042000, address range: 0x00042000-0x00042290
RedBoot>

The debug sections are predefined to reserve enough space in the program header. This is 
necessary if  the program is compiled with the -g option to store debug information in  the 
object file. The DWARF debug interface expects the debug sections to start at address 0. This 
will not interfere with any memory allocation at address 0, because the debug sections are only 
read by the debugger and not allocated by the loader.

SECTIONS {
. = 0x100000;
.text   : { *(.text) }
.data   : { *(.data) }
.bss    : { *(.bss) }
.rodata : { *(.rodata) }
/* stabs debugging sections */
.stab          0 : { *(.stab) }
.stabstr       0 : { *(.stabstr) }
.stab.excl     0 : { *(.stab.excl) }
.stab.exclstr  0 : { *(.stab.exclstr) }
.stab.index    0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment       0 : { *(.comment) }
/* DWARF debug sections

Symbols in the DWARF debugging sections are relative to the 
beginning

of the section so we begin them at 0.  */
/* DWARF 1 */
.debug          0 : { *(.debug) }
.line           0 : { *(.line) }
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/* GNU DWARF 1 extensions */
.debug_srcinfo  0 : { *(.debug_srcinfo) }
.debug_sfnames  0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges  0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info     0 : { *(.debug_info) }
.debug_abbrev   0 : { *(.debug_abbrev) }
.debug_line     0 : { *(.debug_line) }
.debug_frame    0 : { *(.debug_frame) }
.debug_str      0 : { *(.debug_str) }
.debug_loc      0 : { *(.debug_loc) }
.debug_macinfo  0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames  0 : { *(.debug_varnames) }

}

If the debug sections are not predefined and the program is compiled with the debug option, 
the linker will issue the following error message.

arm-elf-ld: Not enough room for program headers

If the debug sections do not start at address 0, then GDB issues the following error message.

Dwarf Error: bad offset (0x100000) in compilation unit header

The linker is invoked with the -T option to us the specified linker script instead of the default 
linker script.

arm-elf-ld -T<linker-script>

The default linker script can be extracted, when the linker is invoked with the --verbose option.

3.3 Binary Utilities

3.3.1 readelf - Display the contents of ELF format files

The readelf tool can be used to analyze the executable file. This will  reveal the entry point 
address, which will be used to initialize the instruction pointer at program invocation. Since ELF 
is designed to be portable, the header also specifies, whether the data in the file is encoded 
with big or little endian byte order. An executable file is ready to be loaded and run.

$ arm-elf-readelf -a -W main
ELF Header:
  Magic:   7f 45 4c 46 01 01 01 61 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            ARM
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           ARM
  Version:                           0x1
  Entry point address:               0x100000
  Start of program headers:          52 (bytes into file)
  Start of section headers:          69944 (bytes into file)
  Flags:                             0x202, has entry point, GNU EABI, software FP
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  Size of this header:               52 (bytes)
  Size of program headers:           32 (bytes)
  Number of program headers:         1
  Size of section headers:           40 (bytes)
  Number of section headers:         18
  Section header string table index: 15

Section Headers

The sections flagged with "A" will be allocated in memory by the loader. An operating system 
kernel must load sections flagged with "X" into executable memory pages and sections flagged 
with  "W" into  writable  memory pages.  For  increased safety,  read only  sections  should  be 
loaded into write protected memory pages. This distribution of programs in memory can only 
be done, if every class of sections is assigned its own set of memory pages.

Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .text             PROGBITS        00100000 008000 000268 00  AX  0   0  4
  [ 2] .glue_7           PROGBITS        00100268 008268 000000 00  AX  0   0  4
  [ 3] .glue_7t          PROGBITS        00100268 008268 000000 00  AX  0   0  4
  [ 4] .data             PROGBITS        00100268 008268 000000 00  WA  0   0  1
  [ 5] .bss              NOBITS          00100268 010268 000000 00  WA  0   0  1
  [ 6] .rodata           PROGBITS        00100268 008268 000028 00   A  0   0  4
  [ 7] .comment          PROGBITS        00000000 010268 000048 00      0   0  1
  [ 8] .debug_aranges    PROGBITS        00000000 0102b0 000080 00      0   0  1
  [ 9] .debug_pubnames   PROGBITS        00000000 010330 000169 00      0   0  1
  [10] .debug_info       PROGBITS        00000000 010499 000642 00      0   0  1
  [11] .debug_abbrev     PROGBITS        00000000 010adb 0002ec 00      0   0  1
  [12] .debug_line       PROGBITS        00000000 010dc7 000134 00      0   0  1
  [13] .debug_frame      PROGBITS        00000000 010efc 000180 00      0   0  4
  [14] .debug_str        PROGBITS        00000000 01107c 00000e 00      0   0  1
  [15] .shstrtab         STRTAB          00000000 01108a 0000ab 00      0   0  1
  [16] .symtab           SYMTAB          00000000 011408 000330 10     17  29  4
  [17] .strtab           STRTAB          00000000 011738 00015a 00      0   0  1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings)
  I (info), L (link order), G (group), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers

Only executable and shared object files have program headers. The LOAD segments specify the 
parts of the file, which are to be loaded into memory.

Program Headers:
  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  LOAD           0x008000 0x00100000 0x00100000 0x00290 0x08268 RWE 0x8000

 Section to Segment mapping:
  Segment Sections...
   00     .text .rodata

There is no dynamic segment in this file.

There are no relocations in this file.

There are no unwind sections in this file.

Symbol Table

The -W option is required to print the entire name of long symbols. In the symbol table, the 
mangled names of methods can be observed, where the parameter types are encoded in the 
symbol name.
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Symbol table '.symtab' contains 51 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 00100000     0 SECTION LOCAL  DEFAULT    1
     2: 00100268     0 SECTION LOCAL  DEFAULT    2
     3: 00100268     0 SECTION LOCAL  DEFAULT    3
     4: 00100268     0 SECTION LOCAL  DEFAULT    4
     5: 00100268     0 SECTION LOCAL  DEFAULT    5
     6: 00100268     0 SECTION LOCAL  DEFAULT    6
     7: 00000000     0 SECTION LOCAL  DEFAULT    7
     8: 00000000     0 SECTION LOCAL  DEFAULT    8
     9: 00000000     0 SECTION LOCAL  DEFAULT    9
    10: 00000000     0 SECTION LOCAL  DEFAULT   10
    11: 00000000     0 SECTION LOCAL  DEFAULT   11
    12: 00000000     0 SECTION LOCAL  DEFAULT   12
    13: 00000000     0 SECTION LOCAL  DEFAULT   13
    14: 00000000     0 SECTION LOCAL  DEFAULT   14
    15: 00000000     0 SECTION LOCAL  DEFAULT   15
    16: 00000000     0 SECTION LOCAL  DEFAULT   16
    17: 00000000     0 SECTION LOCAL  DEFAULT   17
    18: 00000000     0 FILE    LOCAL  DEFAULT  ABS main.cpp
    19: 00100000     0 FUNC    LOCAL  DEFAULT    1 $a
    20: 00100030     0 OBJECT  LOCAL  DEFAULT    1 $d
    21: 00000000     0 FILE    LOCAL  DEFAULT  ABS GPIOE.cpp
    22: 00100034     0 FUNC    LOCAL  DEFAULT    1 $a
    23: 00100058     0 OBJECT  LOCAL  DEFAULT    1 $d
    24: 0010005c     0 FUNC    LOCAL  DEFAULT    1 $a
    25: 00100080     0 OBJECT  LOCAL  DEFAULT    1 $d
    26: 00100084     0 FUNC    LOCAL  DEFAULT    1 $a
    27: 001000d8     0 OBJECT  LOCAL  DEFAULT    1 $d
    28: 001000dc     0 FUNC    LOCAL  DEFAULT    1 $a
    29: 00100130     0 OBJECT  LOCAL  DEFAULT    1 $d
    30: 00000000     0 FILE    LOCAL  DEFAULT  ABS UART1.cpp
    31: 00100134     0 FUNC    LOCAL  DEFAULT    1 $a
    32: 0010017c     0 OBJECT  LOCAL  DEFAULT    1 $d
    33: 00100184     0 FUNC    LOCAL  DEFAULT    1 $a
    34: 00000000     0 FILE    LOCAL  DEFAULT  ABS WatchdogTimer.cpp
    35: 001001cc     0 FUNC    LOCAL  DEFAULT    1 $a
    36: 001001fc     0 OBJECT  LOCAL  DEFAULT    1 $d
    37: 00100200     0 FUNC    LOCAL  DEFAULT    1 $a
    38: 00100230     0 OBJECT  LOCAL  DEFAULT    1 $d
    39: 00100234     0 FUNC    LOCAL  DEFAULT    1 $a
    40: 00100264     0 OBJECT  LOCAL  DEFAULT    1 $d
    41: 00100084    88 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015GPIOE11setGreenLedEb
    42: 00100134    80 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015UART17putCharEc
    43: 00100184    72 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015UART19putStringEPKc
    44: 00100234    52 FUNC    GLOBAL DEFAULT    1 _ZN6ep930113WatchdogTimer7restartEv
    45: 001001cc    52 FUNC    GLOBAL DEFAULT    1 _ZN6ep930113WatchdogTimer7disableEv
    46: 00100200    52 FUNC    GLOBAL DEFAULT    1 _ZN6ep930113WatchdogTimer6enableEv
    47: 00100000    52 FUNC    GLOBAL DEFAULT    1 main
    48: 0010005c    40 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015GPIOE9getRedLedEv
    49: 00100034    40 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015GPIOE11getGreenLedEv
    50: 001000dc    88 FUNC    GLOBAL DEFAULT    1 _ZN6ep93015GPIOE9setRedLedEb

No version information found in this file.

The mangled symbol names in the symbol table can be demangled with the nm or c++filt 
utility to obtain the originating function names.

3.3.2 objdump – Display information from object files

The object files can also be inspected with the objdump tool.

-x display all headers
-d disassemble executable sections

The main difference from readelf is the capability to disassemble sections.
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$ arm-elf-objdump -x -d main
main:     file format elf32-littlearm
main
architecture: arm, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00100000

The output of objdump is a little closer to the ELF format and states, which bits are set rather 
than interpreting them.

Program Headers

Program Header:
    LOAD off    0x00008000 vaddr 0x00100000 paddr 0x00100000 align 2**15
         filesz 0x000002b0 memsz 0x00008288 flags rwx
private flags = 202: [APCS-32] [FPA float format] [software FP] [has entry point]

Section Headers

Sections:
Idx Name          Size      VMA       LMA       File off  Algn
  0 .text         0000027c  00100000  00100000  00008000  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
  1 .glue_7       00000000  0010027c  0010027c  0000827c  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
  2 .glue_7t      00000000  0010027c  0010027c  0000827c  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
  3 .data         00000000  0010027c  0010027c  0000827c  2**0
                  CONTENTS, ALLOC, LOAD, DATA
  4 .got          00000000  0010027c  0010027c  0000827c  2**2
                  CONTENTS, ALLOC, LOAD, DATA
  5 .got.plt      0000000c  0010027c  0010027c  0000827c  2**2
                  CONTENTS, ALLOC, LOAD, DATA
  6 .bss          00000000  00100288  00100288  00010288  2**0
                  ALLOC
  7 .rodata       00000028  00100288  00100288  00008288  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  8 .comment      00000048  00000000  00000000  00010288  2**0
                  CONTENTS, READONLY
  9 .debug_aranges 00000080  00000000  00000000  000102d0  2**0
                  CONTENTS, READONLY, DEBUGGING
 10 .debug_pubnames 00000169  00000000  00000000  00010350  2**0
                  CONTENTS, READONLY, DEBUGGING
 11 .debug_info   00000642  00000000  00000000  000104b9  2**0
                  CONTENTS, READONLY, DEBUGGING
 12 .debug_abbrev 000002ec  00000000  00000000  00010afb  2**0
                  CONTENTS, READONLY, DEBUGGING
 13 .debug_line   00000134  00000000  00000000  00010de7  2**0
                  CONTENTS, READONLY, DEBUGGING
 14 .debug_frame  00000180  00000000  00000000  00010f1c  2**2
                  CONTENTS, READONLY, DEBUGGING
 15 .debug_str    0000000e  00000000  00000000  0001109c  2**0
                  CONTENTS, READONLY, DEBUGGING

Symbol Table

SYMBOL TABLE:
00100000 l    d  .text  00000000
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0010027c l    d  .glue_7        00000000
0010027c l    d  .glue_7t       00000000
0010027c l    d  .data  00000000
0010027c l    d  .got   00000000
0010027c l    d  .got.plt       00000000
00100288 l    d  .bss   00000000
00100288 l    d  .rodata        00000000
00000000 l    d  .comment       00000000
00000000 l    d  .debug_aranges 00000000
00000000 l    d  .debug_pubnames        00000000
00000000 l    d  .debug_info    00000000
00000000 l    d  .debug_abbrev  00000000
00000000 l    d  .debug_line    00000000
00000000 l    d  .debug_frame   00000000
00000000 l    d  .debug_str     00000000
00000000 l    d  *ABS*  00000000
00000000 l    d  *ABS*  00000000
00000000 l    d  *ABS*  00000000
00000000 l    df *ABS*  00000000 main.cpp
00100288 l       .rodata        00000000 .LC0
00100000 l     F .text  00000000 $a
00100040 l     O .text  00000000 $d
00000000 l    df *ABS*  00000000 GPIOE.cpp
00100048 l     F .text  00000000 $a
0010006c l     O .text  00000000 $d
00100070 l     F .text  00000000 $a
00100094 l     O .text  00000000 $d
00100098 l     F .text  00000000 $a
001000ec l     O .text  00000000 $d
001000f0 l     F .text  00000000 $a
00100144 l     O .text  00000000 $d
00000000 l    df *ABS*  00000000 UART1.cpp
00100148 l     F .text  00000000 $a
00100190 l     O .text  00000000 $d
00100198 l     F .text  00000000 $a
00000000 l    df *ABS*  00000000 WatchdogTimer.cpp
001001e0 l     F .text  00000000 $a
00100210 l     O .text  00000000 $d
00100214 l     F .text  00000000 $a
00100244 l     O .text  00000000 $d
00100248 l     F .text  00000000 $a
00100278 l     O .text  00000000 $d
00100098 g     F .text  00000058 _ZN6ep93015GPIOE11setGreenLedEb
00100148 g     F .text  00000050 _ZN6ep93015UART17putCharEc
00100198 g     F .text  00000048 _ZN6ep93015UART19putStringEPKc
00100248 g     F .text  00000034 _ZN6ep930113WatchdogTimer7restartEv
001001e0 g     F .text  00000034 _ZN6ep930113WatchdogTimer7disableEv
00100214 g     F .text  00000034 _ZN6ep930113WatchdogTimer6enableEv
00100000 g     F .text  00000048 main
00100070 g     F .text  00000028 _ZN6ep93015GPIOE9getRedLedEv
0010027c g     O .got.plt       00000000 _GLOBAL_OFFSET_TABLE_
00100048 g     F .text  00000028 _ZN6ep93015GPIOE11getGreenLedEv
001000f0 g     F .text  00000058 _ZN6ep93015GPIOE9setRedLedEb

Disassembly

The following  paragraph shows the disassembly  of  the main  function  in  the .text  section. 
Disassembling ARM instructions is rather straightforward, since the ARM instruction set is a 
fixed length instruction set and therefore the instruction boundaries are clear throughout the 
entire disassembly. Even though data words can not be distinguished from code words, the 
disassembly of data words does not induce any errors, because these instructions are never 
executed.  A  variable  length  instruction  set  as  in  the  z/Architecture  [ZAPOO]  can  not  be 
correctly disassembled on a per instruction basis. This is because of the data bytes, which can 
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corrupt the instruction boundaries, when they are interpreted as instructions. In this case, the 
control flow must be analyzed, to differentiate between data and code.

Disassembly of section .text:

00100000 <main>:
  100000:       e1a0c00d        mov     ip, sp
  100004:       e92ddc00        stmdb   sp!, {sl, fp, ip, lr, pc}
  100008:       e24cb004        sub     fp, ip, #4      ; 0x4
  10000c:       e59fa02c        ldr     sl, [pc, #44]   ; 100040 <.text+0x40>
  100010:       e08fa00a        add     sl, pc, sl
  100014:       e59f3028        ldr     r3, [pc, #40]   ; 100044 <.text+0x44>
  100018:       e08a3003        add     r3, sl, r3
  10001c:       e1a00003        mov     r0, r3
  100020:       eb00005c        bl      100198 <_ZN6ep93015UART19putStringEPKc>
  100024:       e3a00000        mov     r0, #0  ; 0x0
  100028:       eb00001a        bl      100098 <_ZN6ep93015GPIOE11setGreenLedEb>
  10002c:       e3a00001        mov     r0, #1  ; 0x1
  100030:       eb00002e        bl      1000f0 <_ZN6ep93015GPIOE9setRedLedEb>
  100034:       eb000083        bl      100248 <_ZN6ep930113WatchdogTimer7restartEv>
  100038:       eb000075        bl      100214 <_ZN6ep930113WatchdogTimer6enableEv>
  10003c:       eafffffe        b       10003c <main+0x3c>
  100040:       00000264        andeq   r0, r0, r4, ror #4
  100044:       0000000c        andeq   r0, r0, ip
[...]

The last two instructions are actually read-only constants, which are stored locally in the code 
segment of the owning function.

3.3.3 nm - List symbols from object files

The mangled method names are translated back, when the objdump or nm tool is invoked with 
the -C option.

$ nm -C main
00100200 T ep9301::WatchdogTimer::enable()
001001cc T ep9301::WatchdogTimer::disable()
00100234 T ep9301::WatchdogTimer::restart()
00100034 T ep9301::GPIOE::getGreenLed()
00100084 T ep9301::GPIOE::setGreenLed(bool)
0010005c T ep9301::GPIOE::getRedLed()
001000dc T ep9301::GPIOE::setRedLed(bool)
00100134 T ep9301::UART1::putChar(char)
00100184 T ep9301::UART1::putString(char const*)

3.3.4 c++filt - Demangle encoded C++ symbols

Specific mangled symbols can be demangled with the utility c++filt.

$ arm-elf-c++filt _ZN6ep93015UART19putStringEPKc
ep9301::UART1::putString(char const*)

3.4 Loading
The loader allocates the memory areas for the program sections, which are required at run 
time. In doing so, the loader has to respect the attributes of the sections defined in the section 
headers of the ELF file. The contents of the code (.text, .glue, ...) and data (.data, .rodata, ...) 
sections  are  copied  from the  file  into  memory.  On  the  contrary,  the  .bss  section  is  only 
allocated in memory and then set to all zeros.
Several  sections also have an alignment constraint,  which informs the loader, that it  must 
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allocate the section on a specific boundary. This boundary is usually an integral power of 2 in 
bytes. The .text section is allocated on a 4-byte boundary, because this is also the instruction 
word size.
The  section  headers  also  specify,  whether  they  are  executable  or  read-only.  This  can  be 
respected by  the loader by  allocating  the sections  to  memory pages with  the appropriate 
permissions set.

3.5 Executing
Execution of the program is initiated by setting the program counter to the entry point of the 
program. Before this can be done, the execution context has to be set up for the program. First 
of all, this means setting the stack and heap pointer to the corresponding memory addresses.

3.6 Debugging

3.6.1 gdb - The GNU Debugger

As long as the application running on the target board can not host a gdb session, the board 
can only be debugged remotely. To debug a program with gdb, the program must be linked 
with the debug stubs for gdb. These in return require a C runtime environment, which is not 
always available.
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4 Development for the ARM Architecture

4.1 Execution Modes
The ARM architecture defines 7 different execution modes, where 6 of these are privileged 
modes and 5 are exception modes.

mode short privileged exception mode bits

user usr 0b10000

system sys x 0b11111

supervisor svc x x 0b10011

abort abt x x 0b10111

undefined und x x 0b11011

interrupt irq x x 0b10010

fast interrupt fiq x x 0b10001

Table 1: Execution Modes

Only privileged modes can execute privileged instructions and are therefore reserved for kernel 
programs.  Exception  modes  interrupt  the  normal  control  flow  and  link  to  the  established 
exception handler. The mode bits identify the execution mode in the status registers.

4.1.1 Supervisor Mode

The supervisor mode is only entered, when a software interrupt or a reset exception occurs. 
This is also the execution mode, in which the processor begins execution after power on.

4.2 Registers
An ARM processor provides 31 general purpose registers and 6 program status registers.

4.2.1 General Purpose Registers

Among the general purpose registers, there are some, which are more special than the others. 
There exists a second set of registers 8 to 12, which belong to the fast interrupt mode. This 
contributes to the implementation of fast interrupts, by keeping the interrupt handler from 
having to save and restore these registers.

The Stack Pointer

Register 13 is called the stack pointer and points to the current extent of the stack. Every 
exception mode has a stack pointer of its own, which points to the exception specific stack.

The Link Register

Register 14 is called the link register and stores the return address for calls and exceptions. For 
every exception mode, there also exists a private link register, which stores the address to 
return from the exception handler.

The Program Counter

Register 15 is called the program counter, which points to the next instruction to be executed. 
Therefore, load and store operations have different semantics, when they are performed on the 
program counter. Reading the program counter returns the address of the read instruction plus 
an implementation defined offset. Writing to the program counter causes the control flow to 
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jump to the address just written.

nr register description usr sys svc abt und irq fiq

1 R0 general purpose register 0 x x x x x x x

2 R1 general purpose register 1 x x x x x x x

3 R2 general purpose register 2 x x x x x x x

4 R3 general purpose register 3 x x x x x x x

5 R4 general purpose register 4 x x x x x x x

6 R5 general purpose register 5 x x x x x x x

7 R6 general purpose register 6 x x x x x x x

8 R7 general purpose register 7 x x x x x x x

9 R8 general purpose register 8 x x x x x x

10 R9 general purpose register 9 x x x x x x

11 R10 general purpose register 10 x x x x x x

12 R11 general purpose register 11 x x x x x x

13 R12 general purpose register 12 x x x x x x

14 R13 stack pointer x x

15 R14 link register x x

16 PC program counter x x x x x x x

17 R13_svc supervisor stack pointer x

18 R14_svc supervisor link register x

19 R13_abt abort stack pointer x

20 R14_abt abort link register x

21 R13_und undefined stack pointer x

22 R14_und undefined link register x

23 R13_irq interrupt stack pointer x

24 R14_irq interrupt link register x

25 R8_fiq fast interrupt register 8 x

26 R9_fiq fast interrupt register 9 x

27 R10_fiq fast interrupt register 10 x

28 R11_fiq fast interrupt register 11 x

29 R12_fiq fast interrupt register 12 x

30 R13_fiq fast interrupt stack pointer x

31 R14_fiq fast interrupt link register x

Table 2: General Purpose Registers

Dedicated Stacks

Since  every  execution  mode  can  be  interrupted  by  exceptions  with  higher  priority,  every 
execution mode requires a stack base of its own. On the other hand, the set of stacks for the 
privileged  execution  modes  is  only  required  for  every  processor  and  not  every  thread  of 
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execution. The only exception mode, which does not require a stack of its own is the reset 
mode, since it transfers control to the kernel rather than returning to a caller.

4.2.2 Program Status Registers

The control bits of the status registers are especially important to the kernel. The I bit is set to 
disable interrupts and the F bit is set to disable fast interrupts. The mode bits indicate the 
current execution mode.

nr register description usr sys svc abt und irq fiq

1 CPSR current program status register x x x x x x x

2 SPSR_svc supervisor saved program status register x

3 SPSR_abt abort saved program status register x

4 SPSR_und undefined saved program status register x

5 SPSR_irq interrupt saved program status register x

6 SPSR_fiq fast interrupt saved program status register x

Table 3: Program Status Registers

The save program status registers hold the contents of the current program status register, 
before the exception handler  was entered.  Before the exception handler  returns control,  it 
restores the CPSR by loading it with its copy of the SPSR.

4.3 Procedure Call Standard
The procedure call standard for the ARM architecture [ARMAPCS] further defines the usage of 
the general purpose registers.
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register symbol description

0 a1 argument / result / scratch register 1

1 a2 argument / result / scratch register 2

2 a3 argument / scratch register 3

3 a4 argument / scratch register 4

4 v1 variable register 1

5 v2 variable register 2

6 v3 variable register 3

7 v4 variable register 4

8 v5 variable register 5

9
v6
SB
TR

platform register

10 v7 variable register 7

11 v8 variable register 8

12 IP intra procedure call scratch register

13 SP stack pointer

14 LR link register

15 PC program counter

Table 4: Procedure Call Standard

While  most of  these register  allocations  are conventions,  which  must be respected,  if  one 
wants to be compatible to the rest of the world, some of these are actually implemented by the 
hardware. For example, writing to register 15 on an ARM processor will  always result  in a 
branch to address written to the register.

4.3.1 Stack Pointer

The stack is an area of contiguous memory which is bounded by the stack base and the stack 
limit.  For  a  full  descending  stack  the  stack  pointer  is  initialized  to  the  stack  base  and 
decremented by the frame size for every subroutine call. At all times the following constraints 
must be met.

● The stack pointer must point within the memory area allocated to the stack.
stack limit < stack pointer <= stack base

● The stack pointer must be aligned on word boundary.
stack pointer mod 4 = 0

● The stack may only be accessed within the interval of its current extent.
[stack pointer, stack base – 1]

● The stack pointer for a public interface must be aligned on double word boundary.
stack pointer mod 8 = 0

The implementation of a contiguous stack implies, that the distribution of the stacks for several 
threads in the address space is managed efficiently to avoid collisions, since the only way to 
extend a stack is  to decrease the stack limit.  An alternative stack model  can be found in 
[ZOSLEPG] (Chapter 2 – Linkage Conventions) and [ZOSPASG] (Chapter 14 – Stack and Heap 
Storage), where only stack frames must be contiguous, while stack segments can be scattered 
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across the address space.

4.3.2 Link Register

The link register stores the return address, which is to be branched to when returning control 
from the subroutine. It usually contains the address of the instruction (NSI) right after the 
branch instruction,  which invoked the subroutine. NSI is  an acronym and stands for "Next 
Sequential Instruction".

4.3.3 Program Counter

The  program  counter  contains  the  address,  which  was  initially  branched  to  when  the 
subroutine was invoked and thus marks the entry point of the subroutine.

4.3.4 Argument and Result Registers

The first 4 registers are dedicated for passing argument and return values between the caller 
and the subroutine. This enables efficient subroutine parameter passing, since the arguments 
can be passed via the fast registers instead of having to write and read them from the slow 
memory of the stack.

4.4 Exceptions
The handling of exceptions is controlled by their priorities and their disabling via the current 
status register.

exception execution mode priority vector

reset supervisor 1 (highest) 0x00000000

data abort abort 2 0x00000010

fast interrupt fast interrupt 3 0x0000001c

interrupt interrupt 4 0x00000018

prefetch abort abort 5 0x0000000c

undefined instruction undefined 6 (lowest) 0x00000004

software interrupt (SWI) supervisor 6 (lowest) 0x00000008

Table 5: Exceptions

Whenever  an exception  is  raised,  normal  interrupts  are  disabled.  Fast  interrupts  are  only 
disabled by a reset or a fast interrupt.

4.4.1 Exception Vectors

The exception  vectors are the first  8  4-byte  addresses,  which  are branched to,  when the 
corresponding exception occurs. Therefore the instructions at the exception vectors must be 
branch instructions to the appropriate exception handlers.

B   reset      ; branch to reset handler
B   undefined  ; branch to undefined instruction handler
B   swi        ; branch to software interrupt handler
B   prefetch   ; branch to prefetch abort handler
B   data       ; branch to data abort handler
B   reset      ; this exception vector is reserved
B   interrupt  ; branch to interrupt handler
B   fast       ; branch to fast interrupt handler
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4.4.2 Exception Priorities

Whether an exception can occur is controlled via the "fast interrupts disabled" and "interrupts 
disabled" bit in the current program status register. All other exceptions can occur at any point 
in  time.  The  exception  priorities  control,  in  which  sequence  the  corresponding  exception 
handlers are invoked.

4.4.3 Nested Exceptions

exception
execution

reset data abort fast
interrupt

interrupt prefetch
abort

undefined
SWI

user x x x x x x

system x x x x x x

supervisor x x 1 x x

interrupt x x 2 x x

fast interrupt x x x x

abort x x 2 x x

undefined x x 2 x x

Table 6: Execution Modes vs Exception Priorities

1. Fast interrupts are disabled, when the supervisor mode is entered because of a reset 
exception. When the supervisor mode is entered because of a software interrupt, then 
the fast interrupt enabled bit remains unchanged.

2. Fast interrupts are only disabled, if a reset or fast interrupt occurs. Otherwise the fast 
interrupts enabled bit remains unchanged.

4.5 Memory System Endianess
If the standard system control processor is used, which supports both big and little endian 
memory systems, then the endianess bit  in register 1 of control processor 15 must be set 
correctly, before any halfword or byte access is performed on the memory system.

MRC p15,0,r0,c1,c0 ; r0 = cp15 r1
ORR r0,r0,#0x80    ; set big endian bit
MCR p15,0,r0,c1,c0 ; cp15 r1 = r0

4.6 Unaligned Memory Access
The result  of an unaligned memory access is  implementation dependent and may even be 
unpredictable. The meaning of "unpredictable" is constrained, such that it may not cause any 
security holes or cause any part of the system to halt. Otherwise all programs executed on the 
system would have to be trusted. Nonetheless the kernel must check addresses from untrusted 
components, such that it does not produce unpredictable results while in kernel mode.

4.7 Memory Management Unit
The memory is partitioned by the MMU into sections and pages, where 3 different page sizes 
are  supported.  Sections  can  be  mapped  with  a  single  table  lookup,  while  page  mapping 
requires a two step translation.

2007-04-02 Gerald Scharitzer 24 / 32



Introduction to Embedded Kernel Programming

1 section = 1 MB
1 large page = 64 KB
1 small page = 4 KB
1 tiny page = 1 KB

The first level translation table requires 16KB and must be allocated on a 16KB boundary. 
Second level translation tables can be coarse page tables of 1KB size or fine page tables of 4KB 
size. Therefore one has to make a trade off between coarse memory mapping and wasting 
physical memory for large translation tables.

4.8 Instruction Memory Barriers
Whenever memory is modified before execution, the code is called self modifying code. This is 
the case for every operating system, that supports loading programs into memory. Before such 
modified  code  is  executed,  an  instruction  memory  barrier  (IMB)  must  be  executed.  This 
guarantees,  that  the  modification  of  the  instruction  memory  does  not  interfere  with  the 
instruction prefetch.

4.8.1 Global IMB

The execution of a global IMB guarantees, that all accessible memory locations are eligible for 
instruction fetching. For a global IMB the recommended instruction is

SWI 0xF00000

and the C signature of the function should look like this.

void IMB(void);

4.8.2 Local IMB

The execution of a local IMB ensures valid instruction fetches of previously modified memory 
locations only for a specified range of addresses. For a local IMB the recommended instruction 
is

SWI 0xF00001

and the C signature should look like this,

void local_IMB(unsigned long start, unsigned long end);

where "start"  and  "end"  denote  the  boundaries  of  a  half  open interval  of  addresses.  The 
specified memory area ranges from "start" (inclusive) to "end" (exclusive).
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4.9 Physical Memory Mapping
The previous chapters define the following physical memory mapping.

address offset + 0x0 offset + 0x4 offset + 0x8 offset + 0xc area

0x00000000 B reset B undefined B swi B prefetch exception

0x00000010 B data B reset B interrupt B fast vectors

reset reset handler exception

undefined undefined instruction handler handlers

swi software interrupt handler

prefetch prefetch abort handler

data data abort handler

interrupt normal interrupt handler

fast fast interrupt handler

kernel kernel module

global_imb global instruction memory barrier software

local_imb local instruction memory barrier interrupts

16 KB block on
16 KB boundary primary address translation table

4 KB blocks on
4 KB boundary fine address translation tables secondary

address

1 KB blocks on
1 KB boundary coarse address translation tables translation

tables

data stack data abort handler stack exception

fast stack fast interrupt handler stack handler

interrupt stack normal interrupt handler stack stacks

prefetch stack prefetch abort handler stack

undef swi stack undefined instruction and SWI stack

kernel stack supervisor execution mode stack

Table 7: Physical Memory Mapping

The first 8 words contain pointers to the exception handlers. These handlers along with their 
stacks are also allocated in physical memory. The nucleus also contains the system calls of the 
kernel.  If virtual  memory is to be used, then at least one 16 KB block is required for the 
primary address translation table. Fine grained virtual memory allocation additionally requires 
one or more secondary address translation tables.

These physical memory areas must be set up, before virtual memory is turned on. Furthermore 
these memory locations are kernel level objects and must be protected by the MMU.

4.10 Address Space Mapping
An address space is split into common and private areas. The common areas are mapped to 
the same physical addresses in all address spaces. These addresses are used to communicate 
between address spaces via shared memory and to invoke system calls provided by the kernel. 
The private areas contain the code and data, which belong to the address space.
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address length content

0x00000000 4 branch to reset handler

0x00000004 4 branch to undefined instruction handler

0x00000008 4 branch to software interrupt handler

0x0000000c 4 branch to prefetch abort handler

0x00000010 4 branch to data abort handler

0x00000014 4 branch to reset handler

0x00000018 4 branch to interrupt handler

0x0000001c 4 branch to fast interrupt handler

reset reset handler

undefined undefined instruction handler

swi software interrupt handler

prefetch prefetch abort handler

data data abort handler

interrupt interrupt handler

fast fast interrupt handler

imb instruction memory barriers

Table 8: Address Space Mapping

An address space switch  can  be done by  modifying  the address  translation  tables  during 
runtime. This way the private areas of different address spaces can be mapped to different 
physical addresses.
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5 Development for the EDB9302
The development for the EDB9302 board is based on the EP9301 User's Guide [EP9301UG]. In 
this example we access the following peripheral interfaces.

● General Purpose IO (GPIO) port E
● Universal Asynchronous Receiver Transmitter (UART) 1
● Watchdog Timer

These  interfaces  are  accessed  via  physical  addresses,  which  do  not  map  to  any  memory 
locations, but instead specify the hardware registers of the peripheral units.

5.1 Accessing and Controlling Hardware Registers
Hardware registers must be accessed through pointers to volatile fields, because they do not 
follow the read and write semantics of exclusive memory locations. The volatile declaration 
causes the compiler to really read the register, whenever it is referenced and write the register, 
whenever  it  is  assigned.  This  is  necessary,  because  hardware  registers  can  change 
independently of the program flow and accessing them can trigger the underlying hardware 
components. Similar concepts are used for Direct Memory Access (DMA) and memory mapped 
IO.

There exist hardware registers, which can be accessed correctly only in an integral manner. 
This means, that the entire register must be read or written in a single instruction rather than 
processing it as a sequence of bytes. Examples are single LOAD and STORE instructions of half 
words, full words or double words instead of multiple LOADs and STOREs of single bytes.

Furthermore, the maximum address resolution on many architectures is on byte boundary. 
Therefore, whenever single bits must be modified without affecting the other register contents, 
the register must be set in a read-modify-write operation.

5.2 Turning LEDs on and off
The green and red LEDs (GRLED and RDLED) are driven by pins 0 and 1 of the GPIO port E. 
They are turned on and off by simply setting and resetting the corresponding bits 0 and 1 of 
the GPIO port E data register, which is assigned to address 0x80840020.

// General Purpose IO Port E Data Register
#define PEDR (*((volatile unsigned int *) 0x80840020))
#define GRLED 0x1
#define RDLED 0x2
void GPIOE::setGreenLed(bool b) {
  if (b)
    PEDR |= GRLED; // turn green led off
  else
    PEDR &= ~GRLED; // turn green led off
}
void GPIOE::setRedLed(bool b) {
  if (b)
    PEDR |= RDLED; // turn red led off
  else
    PEDR &= ~RDLED; // turn red led off
}
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5.3 Communicating via the Serial Interface
When the transmit FIFO buffer is not full, then a write to the UART1Data register will cause the 
least significant byte of the register to be transmitted over the serial interface.

// UART 1 Data Register
#define UART1Data (*((volatile unsigned int *) 0x808c0000))
// UART 1 Flag Register
#define UART1Flag (*((volatile unsigned int *) 0x808c0018))
// Transmit FIFO Full
#define TXFF 0x20
void UART1::putChar(const char c) {
  while (UART1Flag & TXFF); /* polling */
  UART1Data = c & 0xff; /* transmit byte */
}

Instead of wasting CPU cycles with polling the UART1 flag register, the communication can be 
performed with interrupts or direct memory access.

5.4 Resetting via the Watchdog Timer
When the watchdog timer is enabled and not restarted within its time out period, then a reset 
pulse is generated. The watchdog register is assigned to address 0x80940000 and enabled by 
writing 0xaaaa to it.

// watchdog control register
#define Watchdog (*((volatile unsigned int *) 0x80940000))
#define ENABLE_WATCHDOG  0xaaaa
#define DISABLE_WATCHDOG 0xaa55
#define RESTART_WATCHDOG 0x5555
void WatchdogTimer::restart(void) {
  Watchdog = RESTART_WATCHDOG;
}
void WatchdogTimer::enable(void) {
  Watchdog = ENABLE_WATCHDOG;
}
WatchdogTimer::restart();
WatchdogTimer::enable();
while(1); // loop while waiting for reset
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6 Summary
The operating system kernel manages the allocation of hardware resources and is therefore 
inherently architecture dependent. On top of the kernel, the operating system can implement a 
hardware abstraction layer to provide a consistent and architecture independent programming 
interface to applications.

Several features provided by the operating system kernel require explicit hardware support. If 
the operating system wants to make sure, that it will receive control again after passing it to 
an application, it will need timer based interrupts. To make the kernel trustworthy, it has to be 
protected  from  erroneous  or  malicious  application  code.  For  this  it  will  need  a  memory 
management unit, that controls all memory accesses.

The hardware architecture and communication protocols define the framework in which the 
kernel can be implemented. From the bottom, the hardware architecture defines the atomic 
building blocks (instructions, registers, ...), which are available to the implementer. Top down, 
the kernel interface defines, which algorithms and data structures are to be implemented by 
the underlying hardware.

The operating system must provide an execution environment to application programs. An 
application program is compiled and linked for a specific runtime environment. When invoked, 
the program simply starts executing, because it is assumed, that the runtime environment is 
already set up by the operating system. This runtime environment consists of all the resources, 
which were allocated to the application. Since resource allocation may only occur in supervisor 
mode, this is the job of the operating system. Application programs may only be executed in 
problem mode to protect the operating system and other applications.
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8 Resources

ARM tool chain GNU ARM Toolchain
http://gnuarm.org/files.html

boot loader RedBoot
http://sourceware.org/redboot/

L4 kernel L4KA Pistachio
http://l4ka.org/download/

Linux for Windows Cygwin
http://cygwin.com/

TFTP server Solar Winds TFTP Server
http://www.solarwinds.net/freetools.htm
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