
Introduction to Embedded Kernel Programming

Introduction to Embedded Kernel Programming

Low Level Programming for the ARM920T Processor

Version 1.0

Bachelor Thesis of

Gerald Scharitzer

Vienna University of Technology

(Matriculation Number e0127228)

2007-04-02 Gerald Scharitzer 1 / 32

Introduction to Embedded Kernel Programming

Abstract

This paper shows the fundamental differences between high level application programming in a
hosted and homogeneous environment compared to low level kernel programming in a free
standing and heterogeneous environment.

First the hardware configuration, which was used in the course of this project, is specified. This
way it should be possible for interested readers to conduct the same experiments at home. The
next chapter documents the software configuration, that was used to set up the development
environment. With exception of the operating system, all required software packages are freely
available on the net. Afterwards the development process of cross building with the GNU ARM
tool chain is described. This out-of-the-box tool chain is used, so one can concentrate on
programming on the "bare metal" rather than the burden of having to build a tool chain before
one can start programming at all.

Further on, the architectural implications for developing an operating system kernel for the
ARM Architecture are presented. This introduces the basic building blocks and constraints for
the implementation. In the next chapter the programming of some representative peripheral
devices of the EDB9302 development board is introduced. These examples show simple
drivers, which export low level programming interfaces as callable methods.

Finally, lessons learned from this project are summarized and a list of references and useful
resources is provided.

2007-04-02 Gerald Scharitzer 2 / 32

Introduction to Embedded Kernel Programming

Table of Contents
1 Hardware Configuration.. 4

1.1 Host.. 4
1.2 Target.. 4
1.3 Router... 5
1.4 Connections.. 5

2 Software Configuration... 6
2.1 Boot Loader.. 6
2.2 Host Operating System... 6
2.3 Console.. 6
2.4 Telnet.. 8
2.5 UNIX Environment... 8
2.6 ARM Tool Chain... 8
2.7 TFTP Server.. 8

3 Development with GNU ARM.. 10
3.1 Compiling... 10
3.2 Linking... 11
3.3 Binary Utilities... 12
3.4 Loading.. 17
3.5 Executing... 18
3.6 Debugging.. 18

4 Development for the ARM Architecture.. 19
4.1 Execution Modes.. 19
4.2 Registers.. 19
4.3 Procedure Call Standard... 21
4.4 Exceptions.. 23
4.5 Memory System Endianess.. 24
4.6 Unaligned Memory Access... 24
4.7 Memory Management Unit.. 24
4.8 Instruction Memory Barriers.. 25
4.9 Physical Memory Mapping... 26
4.10 Address Space Mapping.. 26

5 Development for the EDB9302... 28
5.1 Accessing and Controlling Hardware Registers..28
5.2 Turning LEDs on and off.. 28
5.3 Communicating via the Serial Interface... 29
5.4 Resetting via the Watchdog Timer.. 29

6 Summary.. 30
7 References.. 31
8 Resources... 32

2007-04-02 Gerald Scharitzer 3 / 32

Introduction to Embedded Kernel Programming

1 Hardware Configuration
The development environment is based on the following hardware configuration. In the first
phase, the host computer controls the target board by a console via the serial interface. After
that, the host and target systems are configured to communicate over the LAN, which is
provided by the router.

This configuration consists of the following physical components.

● Cirrus Logic EDB9302 Engineering Development Board
● AMD64 Personal Computer
● US Robotics Broadband Router 8000-02
● Serial Null Modem Cable
● 3x CAT5 Cable

1.1 Host
The host computer provides the developing environment and controls the target board. In this
context, the host is a personal computer based on an AMD Athlon 64 Processor, which is an
implementation of the AMD64 architecture. The serial port (COM1) is used for direct
communication with the target, while the LAN is accessed via the ethernet adapter.

1.2 Target
The target is a Cirrus Logic EDB9302 Engineering Development Board, which offers the

2007-04-02 Gerald Scharitzer 4 / 32

Figure 1: Hardware Configuration

Introduction to Embedded Kernel Programming

following core features.

● EP9302 processor
● 32 MB SDRAM
● 2x UART
● Ethernet MAC

The board also offers numerous other features, which were not exploited in this project though.

The Ethernet MAC subsystem is ISO 802.3 compliant and supports 1, 10 and 100 Mb/s transfer
rates.

Before the board is powered on for the first time, make sure that all the jumpers are in their
factory default position. These jumper defaults and locations are documented in [EDBTRM].

When the board is powered on, the LEDs POWER ON (red), 10Mb/s (green) and LED1 (green)
are turned on, while all other LEDs are turned off. If the board is connected to an active router,
the LINK OK LED must turn on. Depending on the configuration, the FULL DUPLEX LED may be
active and the board may switch from the 10 Mb/s to the 100 Mb/s LED.

The board can be manually reset with the power-on-reset or the user-reset key.

1.3 Router
The router serves as an internet gateway and enables the LAN. In this context the router is
configured to IP address 192.168.123.254 and subnet mask 255.255.255.0.

1.4 Connections
The serial null modem cable is an RS-232 cable with DE-9 connectors and connects the serial
port of the host with one serial port of the board. The LAN is built with CAT5e cables for
ethernet connections.

2007-04-02 Gerald Scharitzer 5 / 32

Introduction to Embedded Kernel Programming

2 Software Configuration

2.1 Boot Loader
Originally the board is shipped with Windows CE installed on the flash memory. In the context
of this project we installed RedBoot to boot and configure the board.

2.2 Host Operating System
The host operating system is Microsoft Windows XP Professional Service Pack 2. The network
configuration of the host is a fixed IP address of 192.168.123.135 with a subnet mask of
255.255.255.0.

2.3 Console
The console session is established using HyperTerminal and is configured as follows.

bandwith................ 57600 bit/s
data bits.................8
parity.....................none
stop bits.................1
flow control.............none

When the console session is established, a power on reset of the board will cause the boot
sequence to appear on the console.

+EP93xx - no EEPROM, static ESA, or RedBoot config option.
No network interfaces found
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version v2_0 - built 14:53:37, Nov 10 2005
Platform: Cirrus Logic EDB9302 Board (ARM920T) Rev A
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
FLASH: 0x60000000 - 0x61000000, 128 blocks of 0x00020000 bytes each.
RedBoot>

2.3.1 Flash Configuration

The flash configuration (fconfig) can be displayed (-l) with nick names (-n) and full names (-f).

RedBoot> fconfig -l -n -f
boot_script: Run script at boot: false
bootp: Use BOOTP for network configuration: true
dns_ip: DNS server IP address: 0.0.0.0
ep93xx_esa: Set eth0 network hardware address [MAC]: false
gdb_port: GDB connection port: 9000
info_console_force: Force console for special debug messages: false
net_debug: Network debug at boot time: false
RedBoot>

To enable the board for IP communication, the flash configuration is changed.

RedBoot> fconfig
Run script at boot: false

2007-04-02 Gerald Scharitzer 6 / 32

Introduction to Embedded Kernel Programming

Use BOOTP for network configuration: false
Gateway IP address: 192.168.123.254
Local IP address: 192.168.123.200
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.123.135
DNS server IP address:
Set eth0 network hardware address [MAC]: true
eth0 network hardware address [MAC]: 0x00:0x00:0x00:0x00:0xE8:0x32
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x60fc0000-0x60fc1000: .
... Program from 0x01fde000-0x01fdf000 at 0x60fc0000: .
RedBoot>

Now the new configuration is stored in the flash memory and the board is reset to let the new
configuration take effect.

RedBoot> reset
... Resetting.
+Ethernet eth0: MAC address 00:00:00:00:e8:32
IP: 192.168.123.200/255.255.255.0, Gateway: 192.168.123.254
Default server: 192.168.123.135, DNS server IP: 0.0.0.0
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version v2_0 - built 14:53:37, Nov 10 2005
Platform: Cirrus Logic EDB9302 Board (ARM920T) Rev A
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
FLASH: 0x60000000 - 0x61000000, 128 blocks of 0x00020000 bytes each.
RedBoot>

Now the board is configured to be controlled via the LAN.

RedBoot> fconfig -l -n -f
boot_script: Run script at boot: false
bootp: Use BOOTP for network configuration: false
bootp_my_gateway_ip: Gateway IP address: 192.168.123.254
bootp_my_ip: Local IP address: 192.168.123.200
bootp_my_ip_mask: Local IP address mask: 255.255.255.0
bootp_server_ip: Default server IP address: 192.168.123.135
dns_ip: DNS server IP address: 0.0.0.0
ep93xx_esa: Set eth0 network hardware address [MAC]: true
ep93xx_esa_data: eth0 network hardware address [MAC]:
0x00:0x00:0x00:0x00:0xE8:0x32
gdb_port: GDB connection port: 9000
info_console_force: Force console for special debug messages: false
net_debug: Network debug at boot time: false
RedBoot>

2.3.2 Network Check

The network configuration is checked with the ping command.

Ping will only work if all firewalls on the host and the router allow the exchange of ICMP Echo
Request (8) and Echo Response (0) messages between the host and the board.

2007-04-02 Gerald Scharitzer 7 / 32

Introduction to Embedded Kernel Programming

The communication from the board to the host is tested with the ping command provided by
the boot loader.

RedBoot> ping -h 192.168.123.135
Network PING - from 192.168.123.200 to 192.168.123.135
PING - received 10 of 10 expected
RedBoot>

The communication from the host to the board is tested from cygwin with the ping command.

$ ping 192.168.123.200
PING 192.168.123.200 (192.168.123.200): 56 data bytes
64 bytes from 192.168.123.200: icmp_seq=0 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=1 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=2 ttl=64 time=0 ms
64 bytes from 192.168.123.200: icmp_seq=3 ttl=64 time=0 ms
----192.168.123.200 PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip (ms) min/avg/max/med = 0/0/0/0
$

Now that the IP network is configured correctly and working the board can be accessed and
controlled via the LAN.

2.4 Telnet
When the board is integrated into the LAN it can be controlled through a telnet session. The
board provides the telnet service on port 9000.

The telnet session can only be established, when all firewalls on the host and the router allow
TCP connections from the host to port 9000 of the board.

$ telnet 192.168.123.200 9000
RedBoot>

2.5 UNIX Environment
Cygwin is installed on the Windows based host to provide a UNIX environment. The following
cygwin packages are used for this project.

bash 3.1-9 The GNU Bourne Again SHell
ping 1.0-1 test IP network connectivity

2.6 ARM Tool Chain
The GNU ARM tool chain enables the host to cross compile for the ARM architecture and
provides a set of platform specific tools.

2.7 TFTP Server
The host runs a TFTP server, which makes available the executable program files to the board.

2007-04-02 Gerald Scharitzer 8 / 32

Introduction to Embedded Kernel Programming

The board can only load programs from the host if all firewalls on the host or the router allow
UDP messages between the host port 69 and the board.

When the programs are stored in the root directory of the TFTP server and adhere to the ELF
format, they can be loaded with the load command provided by RedBoot.

RedBoot> load main
Entry point: 0x00100000, address range: 0x00100000-0x00100150
RedBoot>

When RedBoot loads a program via TFTP it reads the transmitted ELF file only as far as it
needs to successfully load the program into memory. Therefore the load command will most
likely not receive the entire ELF file, which will cause the TFTP server to time out the download
and report an unsuccessful transmission. Nonetheless the program was loaded successfully.

RedBoot> go 0x100000
ping

When the loaded program is executed with the "go" command, it can not return control to
RedBoot, because "go" performs a "transfer control" rather than a "call subroutine". Therefore
the main routine should, instead of returning to the caller, set the watchdog timer and wait in
an empty loop for the reset to occur.

RedBoot's "exec" command is used to boot a linux kernel image and therefore expects an
accordingly bound program to be loaded in memory.

2007-04-02 Gerald Scharitzer 9 / 32

Introduction to Embedded Kernel Programming

3 Development with GNU ARM
The GNU ARM tool chain provides a set of tools to cross build for the target arm-elf. In this
project the following tools are used.

arm-elf-gcc The GNU Compiler Collection
arm-elf-ld The GNU linker
arm-elf-objdump Display information from object files
arm-elf-readelf Display the contents of ELF format files

3.1 Compiling
The compiler is invoked with the following set of options.

-c compile the source file to an object file
-g insert debug information
-v verbose output
-fpic generate position independent code
-ffreestanding compile a freestanding application
-mcpu=arm920t ARM920T processor instruction set
-Wa,-a=<filename> save assembler listing as <filename>

In this case the -ffreestanding option is rather a comment, than a processing option, because
the language semantics of c++ include the allocation and release of heap storage, which is a
function provided by hosted environments.

The -mcpu option causes the assembler to stick to the instruction set, which can be executed
by the specified processor.

arm-elf-gcc -c -g -v -ffreestanding -mcpu=arm920t \
-Wa,a=<asmlist> -o <output> <input>

3.1.1 Hosted Environments

In a hosted environment, an entire standard library is available and the program is invoked via
its main function, which returns control to the caller and returns an exit code of type int. This
is the case for most applications.

The GNU ARM tool chain incorporates the newlib, which is a port of the standard library
designed for embedded systems. This library respects the characteristic hardware configuration
of such systems.

The newlib can be easily ported to new environments, since it relies only on the
implementation of a set of few rather simple functions, which all other library functions are
built upon.

3.1.2 Freestanding Environments

In a freestanding environment, there may be no standard library and the program may be
invoked at an arbitrary entry point. This is usually the case for an operating system kernel,
which sets up his own environment.

2007-04-02 Gerald Scharitzer 10 / 32

Introduction to Embedded Kernel Programming

3.2 Linking
The object file is the bound by invoking the appropriate linker.

arm-elf-ld -static --verbose -T<script> -o <output> <input>

3.2.1 The Linker Script

The default linker script is replaced by a user defined script to reduce the size of the executable
program file. The main entry point of the program is defined with the ENTRY statement. In this
case the entry point is set directly to the main function. This is required by the loader to
report, where it has loaded the entry point to.

ENTRY(main)

The start address is set to 0x100000 to avoid conflicts with the memory allocation of the boot
loader. Otherwise the loader will terminate with the following message.

*** Abort! Attempt to load ELF data to address: 0x00000000 which is not in
RAM

RedBoot prints its RAM allocation at start up and these boundaries are stored in the symbols
FREEMEMLO and FREEMEMHI. These can be used to explicitly load programs into available
storage areas.

RAM: 0x00000000-0x02000000, 0x00041de8-0x01fdd000 available
RedBoot> load -b %{FREEMEMLO} main
Address offset = 0x00042000
Entry point: 0x00042000, address range: 0x00042000-0x00042290
RedBoot>

The debug sections are predefined to reserve enough space in the program header. This is
necessary if the program is compiled with the -g option to store debug information in the
object file. The DWARF debug interface expects the debug sections to start at address 0. This
will not interfere with any memory allocation at address 0, because the debug sections are only
read by the debugger and not allocated by the loader.

SECTIONS {
. = 0x100000;
.text : { *(.text) }
.data : { *(.data) }
.bss : { *(.bss) }
.rodata : { *(.rodata) }
/* stabs debugging sections */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections

Symbols in the DWARF debugging sections are relative to the
beginning

of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }

2007-04-02 Gerald Scharitzer 11 / 32

Introduction to Embedded Kernel Programming

/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }

}

If the debug sections are not predefined and the program is compiled with the debug option,
the linker will issue the following error message.

arm-elf-ld: Not enough room for program headers

If the debug sections do not start at address 0, then GDB issues the following error message.

Dwarf Error: bad offset (0x100000) in compilation unit header

The linker is invoked with the -T option to us the specified linker script instead of the default
linker script.

arm-elf-ld -T<linker-script>

The default linker script can be extracted, when the linker is invoked with the --verbose option.

3.3 Binary Utilities

3.3.1 readelf - Display the contents of ELF format files

The readelf tool can be used to analyze the executable file. This will reveal the entry point
address, which will be used to initialize the instruction pointer at program invocation. Since ELF
is designed to be portable, the header also specifies, whether the data in the file is encoded
with big or little endian byte order. An executable file is ready to be loaded and run.

$ arm-elf-readelf -a -W main
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 61 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: ARM
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: ARM
 Version: 0x1
 Entry point address: 0x100000
 Start of program headers: 52 (bytes into file)
 Start of section headers: 69944 (bytes into file)
 Flags: 0x202, has entry point, GNU EABI, software FP

2007-04-02 Gerald Scharitzer 12 / 32

Introduction to Embedded Kernel Programming

 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 1
 Size of section headers: 40 (bytes)
 Number of section headers: 18
 Section header string table index: 15

Section Headers

The sections flagged with "A" will be allocated in memory by the loader. An operating system
kernel must load sections flagged with "X" into executable memory pages and sections flagged
with "W" into writable memory pages. For increased safety, read only sections should be
loaded into write protected memory pages. This distribution of programs in memory can only
be done, if every class of sections is assigned its own set of memory pages.

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 00100000 008000 000268 00 AX 0 0 4
 [2] .glue_7 PROGBITS 00100268 008268 000000 00 AX 0 0 4
 [3] .glue_7t PROGBITS 00100268 008268 000000 00 AX 0 0 4
 [4] .data PROGBITS 00100268 008268 000000 00 WA 0 0 1
 [5] .bss NOBITS 00100268 010268 000000 00 WA 0 0 1
 [6] .rodata PROGBITS 00100268 008268 000028 00 A 0 0 4
 [7] .comment PROGBITS 00000000 010268 000048 00 0 0 1
 [8] .debug_aranges PROGBITS 00000000 0102b0 000080 00 0 0 1
 [9] .debug_pubnames PROGBITS 00000000 010330 000169 00 0 0 1
 [10] .debug_info PROGBITS 00000000 010499 000642 00 0 0 1
 [11] .debug_abbrev PROGBITS 00000000 010adb 0002ec 00 0 0 1
 [12] .debug_line PROGBITS 00000000 010dc7 000134 00 0 0 1
 [13] .debug_frame PROGBITS 00000000 010efc 000180 00 0 0 4
 [14] .debug_str PROGBITS 00000000 01107c 00000e 00 0 0 1
 [15] .shstrtab STRTAB 00000000 01108a 0000ab 00 0 0 1
 [16] .symtab SYMTAB 00000000 011408 000330 10 17 29 4
 [17] .strtab STRTAB 00000000 011738 00015a 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers

Only executable and shared object files have program headers. The LOAD segments specify the
parts of the file, which are to be loaded into memory.

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x008000 0x00100000 0x00100000 0x00290 0x08268 RWE 0x8000

 Section to Segment mapping:
 Segment Sections...
 00 .text .rodata

There is no dynamic segment in this file.

There are no relocations in this file.

There are no unwind sections in this file.

Symbol Table

The -W option is required to print the entire name of long symbols. In the symbol table, the
mangled names of methods can be observed, where the parameter types are encoded in the
symbol name.

2007-04-02 Gerald Scharitzer 13 / 32

Introduction to Embedded Kernel Programming

Symbol table '.symtab' contains 51 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 00100000 0 SECTION LOCAL DEFAULT 1
 2: 00100268 0 SECTION LOCAL DEFAULT 2
 3: 00100268 0 SECTION LOCAL DEFAULT 3
 4: 00100268 0 SECTION LOCAL DEFAULT 4
 5: 00100268 0 SECTION LOCAL DEFAULT 5
 6: 00100268 0 SECTION LOCAL DEFAULT 6
 7: 00000000 0 SECTION LOCAL DEFAULT 7
 8: 00000000 0 SECTION LOCAL DEFAULT 8
 9: 00000000 0 SECTION LOCAL DEFAULT 9
 10: 00000000 0 SECTION LOCAL DEFAULT 10
 11: 00000000 0 SECTION LOCAL DEFAULT 11
 12: 00000000 0 SECTION LOCAL DEFAULT 12
 13: 00000000 0 SECTION LOCAL DEFAULT 13
 14: 00000000 0 SECTION LOCAL DEFAULT 14
 15: 00000000 0 SECTION LOCAL DEFAULT 15
 16: 00000000 0 SECTION LOCAL DEFAULT 16
 17: 00000000 0 SECTION LOCAL DEFAULT 17
 18: 00000000 0 FILE LOCAL DEFAULT ABS main.cpp
 19: 00100000 0 FUNC LOCAL DEFAULT 1 $a
 20: 00100030 0 OBJECT LOCAL DEFAULT 1 $d
 21: 00000000 0 FILE LOCAL DEFAULT ABS GPIOE.cpp
 22: 00100034 0 FUNC LOCAL DEFAULT 1 $a
 23: 00100058 0 OBJECT LOCAL DEFAULT 1 $d
 24: 0010005c 0 FUNC LOCAL DEFAULT 1 $a
 25: 00100080 0 OBJECT LOCAL DEFAULT 1 $d
 26: 00100084 0 FUNC LOCAL DEFAULT 1 $a
 27: 001000d8 0 OBJECT LOCAL DEFAULT 1 $d
 28: 001000dc 0 FUNC LOCAL DEFAULT 1 $a
 29: 00100130 0 OBJECT LOCAL DEFAULT 1 $d
 30: 00000000 0 FILE LOCAL DEFAULT ABS UART1.cpp
 31: 00100134 0 FUNC LOCAL DEFAULT 1 $a
 32: 0010017c 0 OBJECT LOCAL DEFAULT 1 $d
 33: 00100184 0 FUNC LOCAL DEFAULT 1 $a
 34: 00000000 0 FILE LOCAL DEFAULT ABS WatchdogTimer.cpp
 35: 001001cc 0 FUNC LOCAL DEFAULT 1 $a
 36: 001001fc 0 OBJECT LOCAL DEFAULT 1 $d
 37: 00100200 0 FUNC LOCAL DEFAULT 1 $a
 38: 00100230 0 OBJECT LOCAL DEFAULT 1 $d
 39: 00100234 0 FUNC LOCAL DEFAULT 1 $a
 40: 00100264 0 OBJECT LOCAL DEFAULT 1 $d
 41: 00100084 88 FUNC GLOBAL DEFAULT 1 _ZN6ep93015GPIOE11setGreenLedEb
 42: 00100134 80 FUNC GLOBAL DEFAULT 1 _ZN6ep93015UART17putCharEc
 43: 00100184 72 FUNC GLOBAL DEFAULT 1 _ZN6ep93015UART19putStringEPKc
 44: 00100234 52 FUNC GLOBAL DEFAULT 1 _ZN6ep930113WatchdogTimer7restartEv
 45: 001001cc 52 FUNC GLOBAL DEFAULT 1 _ZN6ep930113WatchdogTimer7disableEv
 46: 00100200 52 FUNC GLOBAL DEFAULT 1 _ZN6ep930113WatchdogTimer6enableEv
 47: 00100000 52 FUNC GLOBAL DEFAULT 1 main
 48: 0010005c 40 FUNC GLOBAL DEFAULT 1 _ZN6ep93015GPIOE9getRedLedEv
 49: 00100034 40 FUNC GLOBAL DEFAULT 1 _ZN6ep93015GPIOE11getGreenLedEv
 50: 001000dc 88 FUNC GLOBAL DEFAULT 1 _ZN6ep93015GPIOE9setRedLedEb

No version information found in this file.

The mangled symbol names in the symbol table can be demangled with the nm or c++filt
utility to obtain the originating function names.

3.3.2 objdump – Display information from object files

The object files can also be inspected with the objdump tool.

-x display all headers
-d disassemble executable sections

The main difference from readelf is the capability to disassemble sections.

2007-04-02 Gerald Scharitzer 14 / 32

Introduction to Embedded Kernel Programming

$ arm-elf-objdump -x -d main
main: file format elf32-littlearm
main
architecture: arm, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00100000

The output of objdump is a little closer to the ELF format and states, which bits are set rather
than interpreting them.

Program Headers

Program Header:
 LOAD off 0x00008000 vaddr 0x00100000 paddr 0x00100000 align 2**15
 filesz 0x000002b0 memsz 0x00008288 flags rwx
private flags = 202: [APCS-32] [FPA float format] [software FP] [has entry point]

Section Headers

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 0000027c 00100000 00100000 00008000 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .glue_7 00000000 0010027c 0010027c 0000827c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .glue_7t 00000000 0010027c 0010027c 0000827c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 3 .data 00000000 0010027c 0010027c 0000827c 2**0
 CONTENTS, ALLOC, LOAD, DATA
 4 .got 00000000 0010027c 0010027c 0000827c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 5 .got.plt 0000000c 0010027c 0010027c 0000827c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 6 .bss 00000000 00100288 00100288 00010288 2**0
 ALLOC
 7 .rodata 00000028 00100288 00100288 00008288 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 8 .comment 00000048 00000000 00000000 00010288 2**0
 CONTENTS, READONLY
 9 .debug_aranges 00000080 00000000 00000000 000102d0 2**0
 CONTENTS, READONLY, DEBUGGING
 10 .debug_pubnames 00000169 00000000 00000000 00010350 2**0
 CONTENTS, READONLY, DEBUGGING
 11 .debug_info 00000642 00000000 00000000 000104b9 2**0
 CONTENTS, READONLY, DEBUGGING
 12 .debug_abbrev 000002ec 00000000 00000000 00010afb 2**0
 CONTENTS, READONLY, DEBUGGING
 13 .debug_line 00000134 00000000 00000000 00010de7 2**0
 CONTENTS, READONLY, DEBUGGING
 14 .debug_frame 00000180 00000000 00000000 00010f1c 2**2
 CONTENTS, READONLY, DEBUGGING
 15 .debug_str 0000000e 00000000 00000000 0001109c 2**0
 CONTENTS, READONLY, DEBUGGING

Symbol Table

SYMBOL TABLE:
00100000 l d .text 00000000

2007-04-02 Gerald Scharitzer 15 / 32

Introduction to Embedded Kernel Programming

0010027c l d .glue_7 00000000
0010027c l d .glue_7t 00000000
0010027c l d .data 00000000
0010027c l d .got 00000000
0010027c l d .got.plt 00000000
00100288 l d .bss 00000000
00100288 l d .rodata 00000000
00000000 l d .comment 00000000
00000000 l d .debug_aranges 00000000
00000000 l d .debug_pubnames 00000000
00000000 l d .debug_info 00000000
00000000 l d .debug_abbrev 00000000
00000000 l d .debug_line 00000000
00000000 l d .debug_frame 00000000
00000000 l d .debug_str 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
00000000 l df *ABS* 00000000 main.cpp
00100288 l .rodata 00000000 .LC0
00100000 l F .text 00000000 $a
00100040 l O .text 00000000 $d
00000000 l df *ABS* 00000000 GPIOE.cpp
00100048 l F .text 00000000 $a
0010006c l O .text 00000000 $d
00100070 l F .text 00000000 $a
00100094 l O .text 00000000 $d
00100098 l F .text 00000000 $a
001000ec l O .text 00000000 $d
001000f0 l F .text 00000000 $a
00100144 l O .text 00000000 $d
00000000 l df *ABS* 00000000 UART1.cpp
00100148 l F .text 00000000 $a
00100190 l O .text 00000000 $d
00100198 l F .text 00000000 $a
00000000 l df *ABS* 00000000 WatchdogTimer.cpp
001001e0 l F .text 00000000 $a
00100210 l O .text 00000000 $d
00100214 l F .text 00000000 $a
00100244 l O .text 00000000 $d
00100248 l F .text 00000000 $a
00100278 l O .text 00000000 $d
00100098 g F .text 00000058 _ZN6ep93015GPIOE11setGreenLedEb
00100148 g F .text 00000050 _ZN6ep93015UART17putCharEc
00100198 g F .text 00000048 _ZN6ep93015UART19putStringEPKc
00100248 g F .text 00000034 _ZN6ep930113WatchdogTimer7restartEv
001001e0 g F .text 00000034 _ZN6ep930113WatchdogTimer7disableEv
00100214 g F .text 00000034 _ZN6ep930113WatchdogTimer6enableEv
00100000 g F .text 00000048 main
00100070 g F .text 00000028 _ZN6ep93015GPIOE9getRedLedEv
0010027c g O .got.plt 00000000 _GLOBAL_OFFSET_TABLE_
00100048 g F .text 00000028 _ZN6ep93015GPIOE11getGreenLedEv
001000f0 g F .text 00000058 _ZN6ep93015GPIOE9setRedLedEb

Disassembly

The following paragraph shows the disassembly of the main function in the .text section.
Disassembling ARM instructions is rather straightforward, since the ARM instruction set is a
fixed length instruction set and therefore the instruction boundaries are clear throughout the
entire disassembly. Even though data words can not be distinguished from code words, the
disassembly of data words does not induce any errors, because these instructions are never
executed. A variable length instruction set as in the z/Architecture [ZAPOO] can not be
correctly disassembled on a per instruction basis. This is because of the data bytes, which can

2007-04-02 Gerald Scharitzer 16 / 32

Introduction to Embedded Kernel Programming

corrupt the instruction boundaries, when they are interpreted as instructions. In this case, the
control flow must be analyzed, to differentiate between data and code.

Disassembly of section .text:

00100000 <main>:
 100000: e1a0c00d mov ip, sp
 100004: e92ddc00 stmdb sp!, {sl, fp, ip, lr, pc}
 100008: e24cb004 sub fp, ip, #4 ; 0x4
 10000c: e59fa02c ldr sl, [pc, #44] ; 100040 <.text+0x40>
 100010: e08fa00a add sl, pc, sl
 100014: e59f3028 ldr r3, [pc, #40] ; 100044 <.text+0x44>
 100018: e08a3003 add r3, sl, r3
 10001c: e1a00003 mov r0, r3
 100020: eb00005c bl 100198 <_ZN6ep93015UART19putStringEPKc>
 100024: e3a00000 mov r0, #0 ; 0x0
 100028: eb00001a bl 100098 <_ZN6ep93015GPIOE11setGreenLedEb>
 10002c: e3a00001 mov r0, #1 ; 0x1
 100030: eb00002e bl 1000f0 <_ZN6ep93015GPIOE9setRedLedEb>
 100034: eb000083 bl 100248 <_ZN6ep930113WatchdogTimer7restartEv>
 100038: eb000075 bl 100214 <_ZN6ep930113WatchdogTimer6enableEv>
 10003c: eafffffe b 10003c <main+0x3c>
 100040: 00000264 andeq r0, r0, r4, ror #4
 100044: 0000000c andeq r0, r0, ip
[...]

The last two instructions are actually read-only constants, which are stored locally in the code
segment of the owning function.

3.3.3 nm - List symbols from object files

The mangled method names are translated back, when the objdump or nm tool is invoked with
the -C option.

$ nm -C main
00100200 T ep9301::WatchdogTimer::enable()
001001cc T ep9301::WatchdogTimer::disable()
00100234 T ep9301::WatchdogTimer::restart()
00100034 T ep9301::GPIOE::getGreenLed()
00100084 T ep9301::GPIOE::setGreenLed(bool)
0010005c T ep9301::GPIOE::getRedLed()
001000dc T ep9301::GPIOE::setRedLed(bool)
00100134 T ep9301::UART1::putChar(char)
00100184 T ep9301::UART1::putString(char const*)

3.3.4 c++filt - Demangle encoded C++ symbols

Specific mangled symbols can be demangled with the utility c++filt.

$ arm-elf-c++filt _ZN6ep93015UART19putStringEPKc
ep9301::UART1::putString(char const*)

3.4 Loading
The loader allocates the memory areas for the program sections, which are required at run
time. In doing so, the loader has to respect the attributes of the sections defined in the section
headers of the ELF file. The contents of the code (.text, .glue, ...) and data (.data, .rodata, ...)
sections are copied from the file into memory. On the contrary, the .bss section is only
allocated in memory and then set to all zeros.
Several sections also have an alignment constraint, which informs the loader, that it must

2007-04-02 Gerald Scharitzer 17 / 32

Introduction to Embedded Kernel Programming

allocate the section on a specific boundary. This boundary is usually an integral power of 2 in
bytes. The .text section is allocated on a 4-byte boundary, because this is also the instruction
word size.
The section headers also specify, whether they are executable or read-only. This can be
respected by the loader by allocating the sections to memory pages with the appropriate
permissions set.

3.5 Executing
Execution of the program is initiated by setting the program counter to the entry point of the
program. Before this can be done, the execution context has to be set up for the program. First
of all, this means setting the stack and heap pointer to the corresponding memory addresses.

3.6 Debugging

3.6.1 gdb - The GNU Debugger

As long as the application running on the target board can not host a gdb session, the board
can only be debugged remotely. To debug a program with gdb, the program must be linked
with the debug stubs for gdb. These in return require a C runtime environment, which is not
always available.

2007-04-02 Gerald Scharitzer 18 / 32

Introduction to Embedded Kernel Programming

4 Development for the ARM Architecture

4.1 Execution Modes
The ARM architecture defines 7 different execution modes, where 6 of these are privileged
modes and 5 are exception modes.

mode short privileged exception mode bits

user usr 0b10000

system sys x 0b11111

supervisor svc x x 0b10011

abort abt x x 0b10111

undefined und x x 0b11011

interrupt irq x x 0b10010

fast interrupt fiq x x 0b10001

Table 1: Execution Modes

Only privileged modes can execute privileged instructions and are therefore reserved for kernel
programs. Exception modes interrupt the normal control flow and link to the established
exception handler. The mode bits identify the execution mode in the status registers.

4.1.1 Supervisor Mode

The supervisor mode is only entered, when a software interrupt or a reset exception occurs.
This is also the execution mode, in which the processor begins execution after power on.

4.2 Registers
An ARM processor provides 31 general purpose registers and 6 program status registers.

4.2.1 General Purpose Registers

Among the general purpose registers, there are some, which are more special than the others.
There exists a second set of registers 8 to 12, which belong to the fast interrupt mode. This
contributes to the implementation of fast interrupts, by keeping the interrupt handler from
having to save and restore these registers.

The Stack Pointer

Register 13 is called the stack pointer and points to the current extent of the stack. Every
exception mode has a stack pointer of its own, which points to the exception specific stack.

The Link Register

Register 14 is called the link register and stores the return address for calls and exceptions. For
every exception mode, there also exists a private link register, which stores the address to
return from the exception handler.

The Program Counter

Register 15 is called the program counter, which points to the next instruction to be executed.
Therefore, load and store operations have different semantics, when they are performed on the
program counter. Reading the program counter returns the address of the read instruction plus
an implementation defined offset. Writing to the program counter causes the control flow to

2007-04-02 Gerald Scharitzer 19 / 32

Introduction to Embedded Kernel Programming

jump to the address just written.

nr register description usr sys svc abt und irq fiq

1 R0 general purpose register 0 x x x x x x x

2 R1 general purpose register 1 x x x x x x x

3 R2 general purpose register 2 x x x x x x x

4 R3 general purpose register 3 x x x x x x x

5 R4 general purpose register 4 x x x x x x x

6 R5 general purpose register 5 x x x x x x x

7 R6 general purpose register 6 x x x x x x x

8 R7 general purpose register 7 x x x x x x x

9 R8 general purpose register 8 x x x x x x

10 R9 general purpose register 9 x x x x x x

11 R10 general purpose register 10 x x x x x x

12 R11 general purpose register 11 x x x x x x

13 R12 general purpose register 12 x x x x x x

14 R13 stack pointer x x

15 R14 link register x x

16 PC program counter x x x x x x x

17 R13_svc supervisor stack pointer x

18 R14_svc supervisor link register x

19 R13_abt abort stack pointer x

20 R14_abt abort link register x

21 R13_und undefined stack pointer x

22 R14_und undefined link register x

23 R13_irq interrupt stack pointer x

24 R14_irq interrupt link register x

25 R8_fiq fast interrupt register 8 x

26 R9_fiq fast interrupt register 9 x

27 R10_fiq fast interrupt register 10 x

28 R11_fiq fast interrupt register 11 x

29 R12_fiq fast interrupt register 12 x

30 R13_fiq fast interrupt stack pointer x

31 R14_fiq fast interrupt link register x

Table 2: General Purpose Registers

Dedicated Stacks

Since every execution mode can be interrupted by exceptions with higher priority, every
execution mode requires a stack base of its own. On the other hand, the set of stacks for the
privileged execution modes is only required for every processor and not every thread of

2007-04-02 Gerald Scharitzer 20 / 32

Introduction to Embedded Kernel Programming

execution. The only exception mode, which does not require a stack of its own is the reset
mode, since it transfers control to the kernel rather than returning to a caller.

4.2.2 Program Status Registers

The control bits of the status registers are especially important to the kernel. The I bit is set to
disable interrupts and the F bit is set to disable fast interrupts. The mode bits indicate the
current execution mode.

nr register description usr sys svc abt und irq fiq

1 CPSR current program status register x x x x x x x

2 SPSR_svc supervisor saved program status register x

3 SPSR_abt abort saved program status register x

4 SPSR_und undefined saved program status register x

5 SPSR_irq interrupt saved program status register x

6 SPSR_fiq fast interrupt saved program status register x

Table 3: Program Status Registers

The save program status registers hold the contents of the current program status register,
before the exception handler was entered. Before the exception handler returns control, it
restores the CPSR by loading it with its copy of the SPSR.

4.3 Procedure Call Standard
The procedure call standard for the ARM architecture [ARMAPCS] further defines the usage of
the general purpose registers.

2007-04-02 Gerald Scharitzer 21 / 32

Introduction to Embedded Kernel Programming

register symbol description

0 a1 argument / result / scratch register 1

1 a2 argument / result / scratch register 2

2 a3 argument / scratch register 3

3 a4 argument / scratch register 4

4 v1 variable register 1

5 v2 variable register 2

6 v3 variable register 3

7 v4 variable register 4

8 v5 variable register 5

9
v6
SB
TR

platform register

10 v7 variable register 7

11 v8 variable register 8

12 IP intra procedure call scratch register

13 SP stack pointer

14 LR link register

15 PC program counter

Table 4: Procedure Call Standard

While most of these register allocations are conventions, which must be respected, if one
wants to be compatible to the rest of the world, some of these are actually implemented by the
hardware. For example, writing to register 15 on an ARM processor will always result in a
branch to address written to the register.

4.3.1 Stack Pointer

The stack is an area of contiguous memory which is bounded by the stack base and the stack
limit. For a full descending stack the stack pointer is initialized to the stack base and
decremented by the frame size for every subroutine call. At all times the following constraints
must be met.

● The stack pointer must point within the memory area allocated to the stack.
stack limit < stack pointer <= stack base

● The stack pointer must be aligned on word boundary.
stack pointer mod 4 = 0

● The stack may only be accessed within the interval of its current extent.
[stack pointer, stack base – 1]

● The stack pointer for a public interface must be aligned on double word boundary.
stack pointer mod 8 = 0

The implementation of a contiguous stack implies, that the distribution of the stacks for several
threads in the address space is managed efficiently to avoid collisions, since the only way to
extend a stack is to decrease the stack limit. An alternative stack model can be found in
[ZOSLEPG] (Chapter 2 – Linkage Conventions) and [ZOSPASG] (Chapter 14 – Stack and Heap
Storage), where only stack frames must be contiguous, while stack segments can be scattered

2007-04-02 Gerald Scharitzer 22 / 32

Introduction to Embedded Kernel Programming

across the address space.

4.3.2 Link Register

The link register stores the return address, which is to be branched to when returning control
from the subroutine. It usually contains the address of the instruction (NSI) right after the
branch instruction, which invoked the subroutine. NSI is an acronym and stands for "Next
Sequential Instruction".

4.3.3 Program Counter

The program counter contains the address, which was initially branched to when the
subroutine was invoked and thus marks the entry point of the subroutine.

4.3.4 Argument and Result Registers

The first 4 registers are dedicated for passing argument and return values between the caller
and the subroutine. This enables efficient subroutine parameter passing, since the arguments
can be passed via the fast registers instead of having to write and read them from the slow
memory of the stack.

4.4 Exceptions
The handling of exceptions is controlled by their priorities and their disabling via the current
status register.

exception execution mode priority vector

reset supervisor 1 (highest) 0x00000000

data abort abort 2 0x00000010

fast interrupt fast interrupt 3 0x0000001c

interrupt interrupt 4 0x00000018

prefetch abort abort 5 0x0000000c

undefined instruction undefined 6 (lowest) 0x00000004

software interrupt (SWI) supervisor 6 (lowest) 0x00000008

Table 5: Exceptions

Whenever an exception is raised, normal interrupts are disabled. Fast interrupts are only
disabled by a reset or a fast interrupt.

4.4.1 Exception Vectors

The exception vectors are the first 8 4-byte addresses, which are branched to, when the
corresponding exception occurs. Therefore the instructions at the exception vectors must be
branch instructions to the appropriate exception handlers.

B reset ; branch to reset handler
B undefined ; branch to undefined instruction handler
B swi ; branch to software interrupt handler
B prefetch ; branch to prefetch abort handler
B data ; branch to data abort handler
B reset ; this exception vector is reserved
B interrupt ; branch to interrupt handler
B fast ; branch to fast interrupt handler

2007-04-02 Gerald Scharitzer 23 / 32

Introduction to Embedded Kernel Programming

4.4.2 Exception Priorities

Whether an exception can occur is controlled via the "fast interrupts disabled" and "interrupts
disabled" bit in the current program status register. All other exceptions can occur at any point
in time. The exception priorities control, in which sequence the corresponding exception
handlers are invoked.

4.4.3 Nested Exceptions

exception
execution

reset data abort fast
interrupt

interrupt prefetch
abort

undefined
SWI

user x x x x x x

system x x x x x x

supervisor x x 1 x x

interrupt x x 2 x x

fast interrupt x x x x

abort x x 2 x x

undefined x x 2 x x

Table 6: Execution Modes vs Exception Priorities

1. Fast interrupts are disabled, when the supervisor mode is entered because of a reset
exception. When the supervisor mode is entered because of a software interrupt, then
the fast interrupt enabled bit remains unchanged.

2. Fast interrupts are only disabled, if a reset or fast interrupt occurs. Otherwise the fast
interrupts enabled bit remains unchanged.

4.5 Memory System Endianess
If the standard system control processor is used, which supports both big and little endian
memory systems, then the endianess bit in register 1 of control processor 15 must be set
correctly, before any halfword or byte access is performed on the memory system.

MRC p15,0,r0,c1,c0 ; r0 = cp15 r1
ORR r0,r0,#0x80 ; set big endian bit
MCR p15,0,r0,c1,c0 ; cp15 r1 = r0

4.6 Unaligned Memory Access
The result of an unaligned memory access is implementation dependent and may even be
unpredictable. The meaning of "unpredictable" is constrained, such that it may not cause any
security holes or cause any part of the system to halt. Otherwise all programs executed on the
system would have to be trusted. Nonetheless the kernel must check addresses from untrusted
components, such that it does not produce unpredictable results while in kernel mode.

4.7 Memory Management Unit
The memory is partitioned by the MMU into sections and pages, where 3 different page sizes
are supported. Sections can be mapped with a single table lookup, while page mapping
requires a two step translation.

2007-04-02 Gerald Scharitzer 24 / 32

Introduction to Embedded Kernel Programming

1 section = 1 MB
1 large page = 64 KB
1 small page = 4 KB
1 tiny page = 1 KB

The first level translation table requires 16KB and must be allocated on a 16KB boundary.
Second level translation tables can be coarse page tables of 1KB size or fine page tables of 4KB
size. Therefore one has to make a trade off between coarse memory mapping and wasting
physical memory for large translation tables.

4.8 Instruction Memory Barriers
Whenever memory is modified before execution, the code is called self modifying code. This is
the case for every operating system, that supports loading programs into memory. Before such
modified code is executed, an instruction memory barrier (IMB) must be executed. This
guarantees, that the modification of the instruction memory does not interfere with the
instruction prefetch.

4.8.1 Global IMB

The execution of a global IMB guarantees, that all accessible memory locations are eligible for
instruction fetching. For a global IMB the recommended instruction is

SWI 0xF00000

and the C signature of the function should look like this.

void IMB(void);

4.8.2 Local IMB

The execution of a local IMB ensures valid instruction fetches of previously modified memory
locations only for a specified range of addresses. For a local IMB the recommended instruction
is

SWI 0xF00001

and the C signature should look like this,

void local_IMB(unsigned long start, unsigned long end);

where "start" and "end" denote the boundaries of a half open interval of addresses. The
specified memory area ranges from "start" (inclusive) to "end" (exclusive).

2007-04-02 Gerald Scharitzer 25 / 32

Introduction to Embedded Kernel Programming

4.9 Physical Memory Mapping
The previous chapters define the following physical memory mapping.

address offset + 0x0 offset + 0x4 offset + 0x8 offset + 0xc area

0x00000000 B reset B undefined B swi B prefetch exception

0x00000010 B data B reset B interrupt B fast vectors

reset reset handler exception

undefined undefined instruction handler handlers

swi software interrupt handler

prefetch prefetch abort handler

data data abort handler

interrupt normal interrupt handler

fast fast interrupt handler

kernel kernel module

global_imb global instruction memory barrier software

local_imb local instruction memory barrier interrupts

16 KB block on
16 KB boundary primary address translation table

4 KB blocks on
4 KB boundary fine address translation tables secondary

address

1 KB blocks on
1 KB boundary coarse address translation tables translation

tables

data stack data abort handler stack exception

fast stack fast interrupt handler stack handler

interrupt stack normal interrupt handler stack stacks

prefetch stack prefetch abort handler stack

undef swi stack undefined instruction and SWI stack

kernel stack supervisor execution mode stack

Table 7: Physical Memory Mapping

The first 8 words contain pointers to the exception handlers. These handlers along with their
stacks are also allocated in physical memory. The nucleus also contains the system calls of the
kernel. If virtual memory is to be used, then at least one 16 KB block is required for the
primary address translation table. Fine grained virtual memory allocation additionally requires
one or more secondary address translation tables.

These physical memory areas must be set up, before virtual memory is turned on. Furthermore
these memory locations are kernel level objects and must be protected by the MMU.

4.10 Address Space Mapping
An address space is split into common and private areas. The common areas are mapped to
the same physical addresses in all address spaces. These addresses are used to communicate
between address spaces via shared memory and to invoke system calls provided by the kernel.
The private areas contain the code and data, which belong to the address space.

2007-04-02 Gerald Scharitzer 26 / 32

Introduction to Embedded Kernel Programming

address length content

0x00000000 4 branch to reset handler

0x00000004 4 branch to undefined instruction handler

0x00000008 4 branch to software interrupt handler

0x0000000c 4 branch to prefetch abort handler

0x00000010 4 branch to data abort handler

0x00000014 4 branch to reset handler

0x00000018 4 branch to interrupt handler

0x0000001c 4 branch to fast interrupt handler

reset reset handler

undefined undefined instruction handler

swi software interrupt handler

prefetch prefetch abort handler

data data abort handler

interrupt interrupt handler

fast fast interrupt handler

imb instruction memory barriers

Table 8: Address Space Mapping

An address space switch can be done by modifying the address translation tables during
runtime. This way the private areas of different address spaces can be mapped to different
physical addresses.

2007-04-02 Gerald Scharitzer 27 / 32

Introduction to Embedded Kernel Programming

5 Development for the EDB9302
The development for the EDB9302 board is based on the EP9301 User's Guide [EP9301UG]. In
this example we access the following peripheral interfaces.

● General Purpose IO (GPIO) port E
● Universal Asynchronous Receiver Transmitter (UART) 1
● Watchdog Timer

These interfaces are accessed via physical addresses, which do not map to any memory
locations, but instead specify the hardware registers of the peripheral units.

5.1 Accessing and Controlling Hardware Registers
Hardware registers must be accessed through pointers to volatile fields, because they do not
follow the read and write semantics of exclusive memory locations. The volatile declaration
causes the compiler to really read the register, whenever it is referenced and write the register,
whenever it is assigned. This is necessary, because hardware registers can change
independently of the program flow and accessing them can trigger the underlying hardware
components. Similar concepts are used for Direct Memory Access (DMA) and memory mapped
IO.

There exist hardware registers, which can be accessed correctly only in an integral manner.
This means, that the entire register must be read or written in a single instruction rather than
processing it as a sequence of bytes. Examples are single LOAD and STORE instructions of half
words, full words or double words instead of multiple LOADs and STOREs of single bytes.

Furthermore, the maximum address resolution on many architectures is on byte boundary.
Therefore, whenever single bits must be modified without affecting the other register contents,
the register must be set in a read-modify-write operation.

5.2 Turning LEDs on and off
The green and red LEDs (GRLED and RDLED) are driven by pins 0 and 1 of the GPIO port E.
They are turned on and off by simply setting and resetting the corresponding bits 0 and 1 of
the GPIO port E data register, which is assigned to address 0x80840020.

// General Purpose IO Port E Data Register
#define PEDR (*((volatile unsigned int *) 0x80840020))
#define GRLED 0x1
#define RDLED 0x2
void GPIOE::setGreenLed(bool b) {
 if (b)
 PEDR |= GRLED; // turn green led off
 else
 PEDR &= ~GRLED; // turn green led off
}
void GPIOE::setRedLed(bool b) {
 if (b)
 PEDR |= RDLED; // turn red led off
 else
 PEDR &= ~RDLED; // turn red led off
}

2007-04-02 Gerald Scharitzer 28 / 32

Introduction to Embedded Kernel Programming

5.3 Communicating via the Serial Interface
When the transmit FIFO buffer is not full, then a write to the UART1Data register will cause the
least significant byte of the register to be transmitted over the serial interface.

// UART 1 Data Register
#define UART1Data (*((volatile unsigned int *) 0x808c0000))
// UART 1 Flag Register
#define UART1Flag (*((volatile unsigned int *) 0x808c0018))
// Transmit FIFO Full
#define TXFF 0x20
void UART1::putChar(const char c) {
 while (UART1Flag & TXFF); /* polling */
 UART1Data = c & 0xff; /* transmit byte */
}

Instead of wasting CPU cycles with polling the UART1 flag register, the communication can be
performed with interrupts or direct memory access.

5.4 Resetting via the Watchdog Timer
When the watchdog timer is enabled and not restarted within its time out period, then a reset
pulse is generated. The watchdog register is assigned to address 0x80940000 and enabled by
writing 0xaaaa to it.

// watchdog control register
#define Watchdog (*((volatile unsigned int *) 0x80940000))
#define ENABLE_WATCHDOG 0xaaaa
#define DISABLE_WATCHDOG 0xaa55
#define RESTART_WATCHDOG 0x5555
void WatchdogTimer::restart(void) {
 Watchdog = RESTART_WATCHDOG;
}
void WatchdogTimer::enable(void) {
 Watchdog = ENABLE_WATCHDOG;
}
WatchdogTimer::restart();
WatchdogTimer::enable();
while(1); // loop while waiting for reset

2007-04-02 Gerald Scharitzer 29 / 32

Introduction to Embedded Kernel Programming

6 Summary
The operating system kernel manages the allocation of hardware resources and is therefore
inherently architecture dependent. On top of the kernel, the operating system can implement a
hardware abstraction layer to provide a consistent and architecture independent programming
interface to applications.

Several features provided by the operating system kernel require explicit hardware support. If
the operating system wants to make sure, that it will receive control again after passing it to
an application, it will need timer based interrupts. To make the kernel trustworthy, it has to be
protected from erroneous or malicious application code. For this it will need a memory
management unit, that controls all memory accesses.

The hardware architecture and communication protocols define the framework in which the
kernel can be implemented. From the bottom, the hardware architecture defines the atomic
building blocks (instructions, registers, ...), which are available to the implementer. Top down,
the kernel interface defines, which algorithms and data structures are to be implemented by
the underlying hardware.

The operating system must provide an execution environment to application programs. An
application program is compiled and linked for a specific runtime environment. When invoked,
the program simply starts executing, because it is assumed, that the runtime environment is
already set up by the operating system. This runtime environment consists of all the resources,
which were allocated to the application. Since resource allocation may only occur in supervisor
mode, this is the job of the operating system. Application programs may only be executed in
problem mode to protect the operating system and other applications.

2007-04-02 Gerald Scharitzer 30 / 32

Introduction to Embedded Kernel Programming

7 References

[ARM920T] ARM920T (Rev 1) Technical Reference Manual
http://www.arm.com/pdfs/DDI0151C_920T_TRM.pdf

[ARM9TDMI] ARM9TDMI (Rev 3) Technical Reference Manual
http://www.arm.com/pdfs/DDI0180A.zip

[ARMABI] ARM Application Binary Interface
http://www.arm.com/products/DevTools/ABI.html

[ARMARM] ARM Architecture Reference Manual
http://www.arm.com/miscPDFs/14128.pdf

[ARMAPCS] ARM Architecture Procedure Call Standard
http://www.arm.com/miscPDFs/8031.pdf

[EDB9302] EDB9302 Documentation
http://arm.cirrus.com/files/schematics/edb9302/

[EDBTRM] EDB9302 Technical Reference Manual
http://arm.cirrus.com/files/schematics/edb9302/2_Technical%20Reference%
20Manual/Technical%20Reference%20Manual%20EDB9302.pdf

[EP9301UG] EP9301 User's Guide
http://www.cirrus.com/en/pubs/manual/EP9301_User_Guide.pdf

[L4KA] L4KA Pistachio Microkernel
http://l4ka.org/projects/pistachio/

[L4RM] L4 Version X.2 Reference Manual
http://l4ka.org/projects/pistachio/l4-x2-r5.pdf

[RBUG] RedBoot User Guide
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html

[RVCTAG] RVDS 3.0: RVCT 3.0 Assembler Guide
http://www.arm.com/pdfs/DUI0204G_rvct_assembler_guide.pdf

[ZAPOO] z/Architecture Principles of Operation
http://publibz.boulder.ibm.com/epubs/pdf/a2278324.pdf

[ZOSLEPG] z/OS V1R8.0 Language Environment Programming Guide
http://publibz.boulder.ibm.com/epubs/pdf/ceea2170.pdf

[ZOSPASG] z/OS V1R8.0 MVS Programming Assembler Services Guide
http://publibz.boulder.ibm.com/epubs/pdf/iea2a660.pdf

2007-04-02 Gerald Scharitzer 31 / 32

http://www.arm.com/pdfs/DDI0151C_920T_TRM.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2a660.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2170.pdf
http://publibz.boulder.ibm.com/epubs/pdf/a2278324.pdf
http://www.arm.com/pdfs/DUI0204G_rvct_assembler_guide.pdf
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html
http://l4ka.org/projects/pistachio/l4-x2-r5.pdf
http://l4ka.org/projects/pistachio/
http://www.cirrus.com/en/pubs/manual/EP9301_User_Guide.pdf
http://arm.cirrus.com/files/schematics/edb9302/2_Technical Reference Manual/Technical Reference Manual EDB9302.pdf
http://arm.cirrus.com/files/schematics/edb9302/2_Technical Reference Manual/Technical Reference Manual EDB9302.pdf
http://arm.cirrus.com/files/schematics/edb9302/
http://www.arm.com/miscPDFs/8031.pdf
http://www.arm.com/miscPDFs/14128.pdf
http://www.arm.com/products/DevTools/ABI.html
http://www.arm.com/pdfs/DDI0180A.zip

Introduction to Embedded Kernel Programming

8 Resources

ARM tool chain GNU ARM Toolchain
http://gnuarm.org/files.html

boot loader RedBoot
http://sourceware.org/redboot/

L4 kernel L4KA Pistachio
http://l4ka.org/download/

Linux for Windows Cygwin
http://cygwin.com/

TFTP server Solar Winds TFTP Server
http://www.solarwinds.net/freetools.htm

2007-04-02 Gerald Scharitzer 32 / 32

http://www.solarwinds.net/freetools.htm
http://cygwin.com/
http://l4ka.org/download/
http://sourceware.org/redboot/
http://gnuarm.org/files.html

	1Hardware Configuration
	1.1Host
	1.2Target
	1.3Router
	1.4Connections

	2Software Configuration
	2.1Boot Loader
	2.2Host Operating System
	2.3Console
	2.3.1Flash Configuration
	2.3.2Network Check

	2.4Telnet
	2.5UNIX Environment
	2.6ARM Tool Chain
	2.7TFTP Server

	3Development with GNU ARM
	3.1Compiling
	3.1.1Hosted Environments
	3.1.2Freestanding Environments

	3.2Linking
	3.2.1The Linker Script

	3.3Binary Utilities
	3.3.1readelf - Display the contents of ELF format files
	Section Headers
	Program Headers
	Symbol Table

	3.3.2objdump – Display information from object files
	Program Headers
	Section Headers
	Symbol Table
	Disassembly

	3.3.3nm - List symbols from object files
	3.3.4c++filt - Demangle encoded C++ symbols

	3.4Loading
	3.5Executing
	3.6Debugging
	3.6.1gdb - The GNU Debugger

	4Development for the ARM Architecture
	4.1Execution Modes
	4.1.1Supervisor Mode

	4.2Registers
	4.2.1General Purpose Registers
	The Stack Pointer
	The Link Register
	The Program Counter
	Dedicated Stacks

	4.2.2Program Status Registers

	4.3Procedure Call Standard
	4.3.1Stack Pointer
	4.3.2Link Register
	4.3.3Program Counter
	4.3.4Argument and Result Registers

	4.4Exceptions
	4.4.1Exception Vectors
	4.4.2Exception Priorities
	4.4.3Nested Exceptions

	4.5Memory System Endianess
	4.6Unaligned Memory Access
	4.7Memory Management Unit
	4.8Instruction Memory Barriers
	4.8.1Global IMB
	4.8.2Local IMB

	4.9Physical Memory Mapping
	4.10Address Space Mapping

	5Development for the EDB9302
	5.1Accessing and Controlling Hardware Registers
	5.2Turning LEDs on and off
	5.3Communicating via the Serial Interface
	5.4Resetting via the Watchdog Timer

	6Summary
	7References
	8Resources

